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ALEKSANDAR DONEV, ANDY NONAKA, YIFEI SUN,
THOMAS G. FAI, ALEJANDRO L. GARCIA AND JOHN B. BELL

We formulate low Mach number fluctuating hydrodynamic equations appropriate
for modeling diffusive mixing in isothermal mixtures of fluids with different
density and transport coefficients. These equations represent a coarse-graining
of the microscopic dynamics of the fluid molecules in both space and time and
eliminate the fluctuations in pressure associated with the propagation of sound
waves by replacing the equation of state with a local thermodynamic constraint.
We demonstrate that the low Mach number model preserves the spatiotemporal
spectrum of the slower diffusive fluctuations. We develop a strictly conservative
finite-volume spatial discretization of the low Mach number fluctuating equations
in both two and three dimensions and construct several explicit Runge–Kutta
temporal integrators that strictly maintain the equation-of-state constraint. The
resulting spatiotemporal discretization is second-order accurate deterministically
and maintains fluctuation-dissipation balance in the linearized stochastic equa-
tions. We apply our algorithms to model the development of giant concentration
fluctuations in the presence of concentration gradients and investigate the validity
of common simplifications such as neglecting the spatial nonhomogeneity of
density and transport properties. We perform simulations of diffusive mixing
of two fluids of different densities in two dimensions and compare the results
of low Mach number continuum simulations to hard-disk molecular-dynamics
simulations. Excellent agreement is observed between the particle and continuum
simulations of giant fluctuations during time-dependent diffusive mixing.

I. Introduction

Stochastic fluctuations are intrinsic to fluid dynamics because fluids are composed
of molecules whose positions and velocities are random at thermodynamic scales.
Because they span the whole range of scales from the microscopic to the macroscopic
[23; 75], fluctuations need to be consistently included in all levels of description.
Stochastic effects are important for flows in new microfluidic, nanofluidic, and
microelectromechanical devices [7]; novel materials such as nanofluids [79]; and
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biological systems such as lipid membranes [57], Brownian molecular motors [64],
and nanopores [20]; as well as processes where the effect of fluctuations is amplified
by strong nonequilibrium effects such as ultraclean combustion, capillary dynamics
[16; 68], and hydrodynamic instabilities [55; 14; 44].

One can capture thermal fluctuations using direct particle-level calculations. But
even coarse-grained particle methods [59; 22; 23] are computationally expensive
because the dynamics of individual particles has time scales significantly shorter
than hydrodynamic time scales. Alternatively, thermal fluctuations can be included
in the Navier–Stokes equations through stochastic forcing terms as proposed by
Landau and Lifshitz [48] and later extended to fluid mixtures [61]. The basic
idea of fluctuating hydrodynamics is to add a stochastic flux corresponding to each
dissipative (irreversible, diffusive) flux [62]. This ensures that the microscopic
conservation laws and thermodynamic principles are obeyed while also maintaining
fluctuation-dissipation balance. Specifically, the equilibrium thermal fluctuations
have the Gibbs–Boltzmann distribution dictated by statistical mechanics. Fluctuating
hydrodynamics is a useful tool in understanding complex fluid flows far from
equilibrium [61], but theoretical calculations are often only feasible after ignoring
nonlinearities, inhomogeneities in density, temperature, and transport properties,
surface dynamics, gravity, unsteady flow patterns, and other important effects. In
the past decade, fluctuating hydrodynamics has been applied to study a number of
nontrivial practical problems [31; 68; 71; 3]; however, the numerical methods used
are far from the comparable state of the art for deterministic solvers.

Previous computational studies of the effect of thermal fluctuations in fluid mix-
tures [68; 6; 71] have been based on the compressible fluid equations and thus require
small time steps to resolve fast sound waves (pressure fluctuations). Recently, some
of us developed finite-volume methods for the incompressible equations of fluctuat-
ing hydrodynamics [73], which eliminate the stiffness arising from the separation of
scales between the acoustic and vortical modes [47; 52]. For inhomogeneous fluids
with nonconstant density, diffusive mass and heat fluxes create local expansion and
contraction of the fluid, and the incompressibility constraint should be replaced by a
“quasi-incompressibility” constraint [52; 50]. The resulting low Mach number equa-
tions have been used for some time to model deterministic flows with thermochem-
ical effects [66; 52], and several conservative finite-volume techniques have been
developed for solving equations of this type [63; 67; 15; 58; 56]. To our knowledge,
thermal fluctuations have not yet been incorporated in low Mach number models.

In this work, we extend the staggered-grid, finite-volume approach developed
in [73] to isothermal mixtures of fluids with unequal densities. The imposition of
the quasi-incompressibility constraint poses several nontrivial mathematical and
computational challenges. At the mathematical level, the traditional low Mach
number asymptotic expansions [47; 52] assume spatiotemporal smoothness of the
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flow and thus do not directly apply in the stochastic context. At the computational
level, enforcing the quasi-incompressibility or equation-of-state (EOS) constraint in
a conservative and stable manner requires specialized spatiotemporal discretizations.
By careful selection of the analytical form of the EOS constraint and the spatial
discretization of the advective fluxes, we are able to maintain strict local conservation
and enforce the EOS to within numerical tolerances. In the present work, we employ
an explicit projection-based temporal discretization because of the substantial
complexity of designing and implementing semi-implicit discretizations of the
momentum equation for spatially inhomogeneous fluids [10].

Thermal fluctuations exhibit unusual features in systems out of thermodynamic
equilibrium. Notably, external gradients can lead to enhancement of thermal fluctua-
tions and to long-range correlations between fluctuations [36; 53; 30; 60; 61]. Sharp
concentration gradients present during diffusive mixing lead to the development
of macroscopic or giant fluctuations [77; 72; 9] in concentration, which have been
observed using light-scattering and shadowgraphy techniques [76; 12; 75]. These
experimental studies have found good but imperfect agreement between the predic-
tions of a simplified fluctuating hydrodynamic theory and experiments. Computer
simulations are, in principle, an ideal tool for studying such complex time-dependent
processes in the presence of nontrivial boundary conditions without making the sort
of approximations necessary for analytical calculations such as assuming spatially
constant density and transport coefficients and spatially uniform gradients. On the
other hand, the multiscale (more precisely, many-scale) nature of the equations of
fluctuating hydrodynamics poses many mathematical and computational challenges
that are yet to be addressed. Notably, it is necessary to develop temporal integrators
that can accurately and robustly handle the large separation of time scales between
different physical processes such as mass and momentum diffusion. The computa-
tional techniques we develop here form the foundation for incorporating additional
physics such as heat transfer and internal energy fluctuations, phase separation and
interfacial dynamics, and chemical reactions.

We begin Section II by formulating the fluctuating low Mach number equations
for an isothermal binary fluid mixture. We present both a traditional pressure
(constrained) formulation and a gauge (unconstrained) formulation. We analyze
the spatiotemporal spectrum of the thermal fluctuations in the linearized equations
and demonstrate that the low Mach equations eliminate the fast (sonic) pressure
fluctuations but maintain the correct spectrum of the slow (diffusive) fluctuations.
In Section III, we develop projected Runge–Kutta schemes for solving the spatially
discretized equations, including a midpoint and a trapezoidal second-order predictor-
corrector scheme and a third-order three-stage scheme. In Section IV, we describe
a spatial discretization of the equations that strictly maintains the equation-of-
state constraint and also obeys a fluctuation-dissipation balance principle [29]. In
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Section V, we study the steady-state spectrum of giant concentration fluctuations in
the presence of an applied concentration gradient in a mixture of two dissimilar
fluids and test the applicability of common approximations that neglect spatial
inhomogeneities. In Section VI, we study the dynamical evolution of giant interface
fluctuations during diffusive mixing of two dissimilar fluids, using both hard-disk
molecular dynamics and low Mach number fluctuating hydrodynamics. We find
excellent agreement between the two, providing a strong support for the usefulness
of the fluctuating low Mach number equations as a coarse-grained model of complex
fluid mixtures. In Section VII, we offer some concluding remarks and point out
several outstanding challenges for the future. Several technical calculations and
procedures are detailed in the appendices.

II. Low Mach number equations

The compressible equations of fluctuating hydrodynamics were proposed some
time ago [48] and have since been studied and applied successfully to a variety of
situations [61]. The presence of rapid pressure fluctuations due to the propagation
of sound waves leads to stiffness that makes it computationally expensive to solve
the fully compressible equations numerically especially for typical liquids. It is
therefore important to develop fluctuating hydrodynamics equations that capture
the essential physics in cases where acoustics can be neglected.

It is important to note that the equations of fluctuating hydrodynamics are to be
interpreted as a mesoscopic coarse-grained representation of the mass, momentum,
and energy transport that occurs at microscopic scales through molecular interactions
(collisions). As such, these equations implicitly contain a mesoscopic coarse-
graining length and time scale that is larger than molecular scales [34]. While a
coarse-graining scale does not appear explicitly in the formal stochastic partial
differential equations (SPDEs) written in this section (but note that it can be if
desired [26]), it does explicitly enter in the spatiotemporal discretization described
in Section IV through the grid spacing (equivalently, the volume of the grid or,
more precisely, the number of molecules per grid cell) and time-step size. This
changes the appropriate interpretation of convergence of numerical methods to a
continuum limit in the presence of fluctuations and nonlinearities [18]. Only for
the linearized equations of fluctuating hydrodynamics [61] can the formal SPDEs
be given a precise continuum meaning [29].

Developing coarse-grained models that only resolve the relevant spatiotemporal
scales is a well-studied but still ad hoc procedure that requires substantial a priori
physical insight [62]. More precise mathematical mode-elimination procedures
[39; 40; 41; 45] are technically involved and often purely formal especially in
the context of SPDEs [26]. Here we follow a heuristic approach to constructing
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fluctuating low Mach number equations, starting from the well-known deterministic
low Mach equations (which can be obtained via asymptotic analysis [47; 52]) and
then adding fluctuations in a manner consistent with fluctuation-dissipation balance.
Alternatively, our low Mach number equations can be seen as a formal asymptotic
limit in which the noise terms are formally treated as smooth forcing terms; a more
rigorous derivation is nontrivial and is deferred for future work.

II-A. Compressible equations. The starting point of our investigations is the sys-
tem of isothermal compressible equations of fluctuating hydrodynamics for the
density ρ(r, t), velocity v(r, t), and mass concentration c(r, t) for a mixture of two
fluids in d dimensions. In terms of mass and momentum densities, the equations
can be written as conservation laws [62; 61; 6]

∂tρ+∇ · (ρv)= 0,

∂t(ρv)+∇ · (ρvvT )=−∇P + ρg

+∇ ·

[
η(∇v+∇

T v)+
(
κ −

2
d
η
)
(∇ · v)I +6

]
,

∂t(ρ1)+∇ · (ρ1v)=∇ · [ρχ(∇c+ K P∇P)+9], (1)

where ρ1 = ρc is the density of the first component, ρ2 = (1− c)ρ is the density
of the second component, P(ρ, c; T ) is the equation of state for the pressure at
the reference temperature T = T0 = const, and g is the gravitational acceleration.
Temperature fluctuations are neglected in this study but can be accounted for
using a similar approach. The shear viscosity η, bulk viscosity κ , mass diffusion
coefficient χ , and barodiffusion coefficient K P , in general, depend on the state. The
barodiffusion coefficient K P above (denoted by kP/P in [6]; see Equation (A.17)
there) is not a transport coefficient but rather determined from thermodynamics
[49] as

K P =
(∂µ/∂P)c
(∂µ/∂c)P

=−ρ−2 (∂ρ/∂c)P

(∂µ/∂c)P
=
(∂P/∂c)ρ
ρ2c2

Tµc
, (2)

where µ is the chemical potential of the mixture at the reference temperature,
µc = (∂µ/∂c)P , and c2

T = (∂P/∂ρ)c is the isothermal speed of sound. The capital
Greek letters denote stochastic momentum and mass fluxes that are formally modeled
as [73]

6 =
√
ηkB T

(
W +WT

−
2
d

TrW
)
+

√
2κkB T

d
TrW,

9 =

√
2χρµ−1

c kB T W̃,

(3)
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where kB is Boltzmann’s constant and W(r, t) and W̃(r, t) are standard zero-
mean, unit-variance random Gaussian tensor and vector fields with uncorrelated
components

〈Wi j (r, t)Wkl(r ′, t ′)〉 = δik δ jl δ(t − t ′) δ(r − r ′)

and similarly for W̃ .

II-B. Low Mach equations. At mesoscopic scales, in typical liquids, sound waves
are much faster than momentum diffusion and can usually be eliminated from the
fluid-dynamics description. Formally, this corresponds to taking the zero-Mach-
number singular limit cT →∞ of the system (1) by performing an asymptotic
analysis as the Mach number Ma=U/cT → 0, where U is a reference flow velocity.
The limiting dynamics can be obtained by performing an asymptotic expansion
in the Mach number [47]. In a deterministic setting, this analysis shows that the
pressure can be written in the form

P(r, t)= P0(t)+π(r, t),

where π = O(Ma2). The low Mach number equations can then be obtained by
making the ansatz that the thermodynamic behavior of the system is captured by the
reference pressure, P0, and π captures the mechanical behavior while not affecting
the thermodynamics. We note that, when the system is sufficiently large or the
gravitational forcing is sufficiently strong, assuming a spatial constant reference
pressure is not valid. In those cases, the reference pressure represents a global
hydrostatic balance ∇P0 = ρ0 g (see [32] for details of the construction of these
types of models). Here, however, we will restrict consideration to cases where
gravity causes negligible changes in the thermodynamic state across the domain.

In this case, the reference pressure constrains the system so that the evolution
of ρ and c remains consistent with the thermodynamic equation of state

P
(
ρ(r, t), c(r, t); T

)
= P0(t). (4)

This constraint means that any change in concentration (equivalently, ρ1) must be
accompanied by a corresponding change in density as would be observed in a system
at thermodynamic equilibrium held at the fixed reference pressure and temperature.
This implies that variations in density are coupled to variations in composition.
Note that we do not account for temperature variations in our isothermal model.

The equation for ρ1 can be written in primitive (nonconservation) form as the
concentration equation

ρ
Dc
Dt
= ρDt c = ρ(∂t c+ v ·∇c)=∇ · F, (5)
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where the nonadvective (diffusive and stochastic) fluxes are denoted with

F = ρχ∇c+9.

Note that there is no barodiffusion flux because barodiffusion is of thermodynamic
origin (as seen from (2) [61]) and involves the gradient of the thermodynamic
pressure ∇P0 = 0. By differentiating the EOS constraint along a Lagrangian
trajectory, we obtain

Dρ
Dt
= βρ

Dc
Dt
= β∇ · F = ∂tρ+ v ·∇ρ =−ρ∇ · v, (6)

where the solutal expansion coefficient

β(c)= 1
ρ

(∂ρ
∂c

)
P0

is determined by the specific form of the EOS.
Equation (6) shows that the EOS constraint can be rewritten as a constraint on

the divergence of velocity,

ρ∇ · v =−β∇ · F. (7)

Note that the usual incompressibility constraint is obtained when the density is not
affected by changes in concentration, β = 0. When β 6= 0, changes in composition
(concentration) due to diffusion cause local expansion and contraction of the fluid
and thus a nonzero ∇ · v. It is important at this point to consider the boundary
conditions. For a closed system, such as a periodic domain or a system with rigid
boundaries, we must ensure that the integral of ∇ · v over the domain is zero.
This is consistent with (7) if β/ρ is constant so that we can rewrite (7) in the form
∇ ·v=−∇ ·((β/ρ)F). In this case, P0 does not vary in time. If β/ρ is not constant,
then for a closed system the reference pressure P0 must vary in time to enforce that
the total fluid volume remains constant. Here we will assume that β/ρ = const,
and we will give a specific example of an EOS that obeys this condition.

The asymptotic low Mach analysis of (1) is standard and follows the procedure
outlined in [47], formally treating the stochastic forcing as smooth. This analysis
leads to the isothermal low Mach number equations for a binary mixture of fluids
in conservation form,

∂t(ρv)+∇π =−∇ ·(ρvvT )+∇ ·[η(∇v+∇
T v)+6]+ρg ≡ f (ρ, v, c, t), (8)

∂t(ρ1)=−∇ ·(ρ1v)+∇ ·F ≡ h(ρ, v, c, t), (9)

∂t(ρ2)=−∇ ·(ρ2v)−∇ ·F, (10)

such that ∇ ·v =−(ρ−1β)∇ ·F ≡ S(ρ, c, t). (11)
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The gradient of the nonthermodynamic component of the pressure π (Lagrange
multiplier) appears in the momentum equation as a driving force that ensures the
EOS constraint (11) is obeyed. We note that the bulk viscosity term gives a gradient
term that can be absorbed in π and therefore does not explicitly need to appear in
the equations. By adding the two density equations (9) and (10), we get the usual
continuity equation for the total density,

∂tρ =−∇ · (ρv). (12)

Our conservative numerical scheme is based on (8), (9), (11), and (12).
In Appendix A, we apply the standard linearized fluctuating hydrodynamics anal-

ysis to the low Mach number equations. This gives expressions for the equilibrium
and nonequilibrium static and dynamic covariances (spectra) of the fluctuations
in density and concentration as a function of wavenumber and wave frequency.
Specifically, the dynamic structure factor in the low Mach number approximation
has the form

Sρ,ρ(k, ω)=
〈
(δ̂ρ)(δ̂ρ)?

〉
= β2(ρµ−1

c kB T )
2χk2

ω2+χ2k4 .

The linearized analysis shows that the low Mach number equations reproduce the
slow fluctuations (small ω) in density and concentration (central Rayleigh peak
in the dynamic structure factor [61; 29]) as in the full compressible equations
(see Section A.1) while eliminating the fast isentropic pressure fluctuations (side
Brillouin peaks) from the dynamics.

The fluctuations in velocity, however, are different between the compressible and
low Mach number equations. In the compressible equations, the dynamic structure
factor for the longitudinal component of velocity decays to zero as ω→∞ because
it has two sound (Brillouin) peaks centered around ω ≈ ±cT k in addition to the
central diffusive (Rayleigh) peak. The low Mach number equations reproduce
the central peak (slow fluctuations) correctly, replacing the side peaks with a flat
spectrum for large ω, which is unphysical as it formally makes the velocity white in
time. The low Mach equations should therefore be used only for time scales larger
than the sound propagation time.

The fact that the velocity fluctuations are white in space and in time poses
a further challenge in interpreting the nonlinear low Mach number equations,
and in particular, numerical schemes may not converge to a sensible limit as
the time step goes to zero. In practice, just as the spatial discretization of the
equations imposes a spatial smoothing or regularization of the fluctuations, the
temporal discretization of the equations imposes a temporal smoothing and filters
the problematic large frequencies. In the types of problems we study in this
work, the problem concentration fluctuations can be neglected, 9̂ ≈ 0, because the
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concentration fluctuations are dominated by nonequilibrium effects. If 9̂ = 0, the
problematic white-in-time longitudinal component of velocity disappears.

Model equation of state. In general, the EOS constraint (4) is a nonlinear constraint.
In this work, we consider a specific linear EOS,

ρ1

ρ1
+
ρ2

ρ2
=

cρ
ρ1
+
(1− c)ρ
ρ2

= 1, (13)

where ρ1 and ρ2 are the densities of the pure component fluids (c = 1 and c = 0,
respectively), giving

β = ρ
( 1
ρ2
−

1
ρ1

)
=

ρ1− ρ2

cρ2+ (1− c)ρ1
. (14)

It is important that for this specific form of the EOS β/ρ is a material constant
independent of the concentration. The density dependence (14) on concentration
arises if one assumes that the two fluids do not change volume upon mixing. This
is a reasonable assumption for liquids that are not too dissimilar at the molecular
level. Surprisingly, the EOS (13) is also valid for a mixture of ideal gases since

P = P1+ P2 = P0 = nkB T = (n1+ n2)kB T =
( ρ1

m1
+
ρ2

m2

)
kB T,

where m is molecular mass and n = ρ/m is the number density. This is exactly of
the form (13) with ρ1 = m1 P0/(kB T )= nm1 and ρ2 = nm2.

Even if the specific EOS (13) is not a very good approximation over the entire
range of concentration 0≤ c ≤ 1, (13) may be a very good approximation over the
range of concentrations of interest if ρ1 and ρ2 are adjusted accordingly. In this
case, ρ1 and ρ2 are not the densities of the pure component fluids but rather fitting
parameters that approximate the true EOS in the range of concentrations of interest.
For small variations in concentration around some reference concentration c and
density ρ, one can approximate β ≈ ρ −1(∂ρ/∂c)c by a constant and determine
appropriate values of ρ1 and ρ2 from (14) and the EOS (13) evaluated at the
reference state. Our specific form choice of the EOS will aid significantly in the
construction of simple conservative spatial discretizations that strictly maintain the
EOS without requiring complicated nonlinear iterative corrections.

Boundary conditions. Several different types of boundary conditions can be im-
posed for the low Mach number equations just as for the more familiar incompress-
ible equations. The simplest case is when periodic boundary conditions are used
for all of the variables. We briefly describe the different types of conditions that
can be imposed at a physical boundary with normal direction n.

For the concentration (equivalently, ρ1), either Neumann (zero mass flux) or
Dirichlet (fixed concentration) boundary conditions can be imposed. Physically,



56 A. DONEV, A. NONAKA, Y. SUN, T. G. FAI, A. L. GARCIA AND J. B. BELL

a Neumann condition corresponds to a physical boundary that is impermeable to
mass while Dirichlet conditions correspond to a permeable membrane that connects
the system to a large reservoir held at a specified concentration. In the case of
Neumann conditions for concentration, both the normal component of the diffusive
flux Fn = 0 and the advective flux ρ1vn = 0 vanish at the boundary, implying that
the normal component of velocity must vanish, vn = 0. For Dirichlet conditions on
the concentration, however, there will, in general, be a nonzero normal diffusive
flux Fn through the boundary. This diffusive flux for concentration will induce
a corresponding mass flux as required to maintain the equation of state near the
boundary. From the condition (11), we infer the proper boundary condition for the
normal component of velocity to be

vn =−(ρ
−1β)Fn. (15)

This condition expresses the notion that there is no net volume change for the fluid
in the domain. Note that no additional boundary conditions can be specified for ρ
since its boundary conditions follow from those on c via the EOS constraint.

For the tangential component of velocity vτ , we either impose a no-slip condition
vτ = 0 or a free-slip boundary condition in which the tangential component of the
normal viscous stress vanishes,

η

(
∂vn

∂τ
+
∂vτ

∂n

)
= 0.

In the case of zero normal mass flux, vn = 0, the free-slip condition simplifies to a
Neumann condition for the tangential velocity, ∂vτ/∂n = 0.

II-C. Gauge formalism. The low Mach number system of equations (8), (9), (11),
and (12) is a constrained problem. For the purposes of analysis and in particular
for constructing higher-order temporal integrators, it is useful to rewrite the con-
strained low Mach number equations as an unconstrained initial-value problem. In
the incompressible case, ∇ · v = 0, we can write the constrained Navier–Stokes
equations as an unconstrained system by eliminating the pressure using a projection-
operator formalism. The constraint ∇ · v = 0 is a constant linear constraint and
independent of the state and of time. However, in the low Mach number equations,
the velocity-divergence constraint ∇ · v = −βDt c depends on concentration and
also on time when there are additional (stochastic or deterministic) forcing terms in
the concentration equation. Treating this type of system requires a more general
vector-field decomposition. This more general vector-field decomposition provides
the basis for a projection-based discretization of the constrained system. We
also introduce a gauge formulation of the system [33] that casts the evolution
as a nonlocal unconstrained system that is analytically equivalent to the original
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constrained evolution. The gauge formulation allows us to develop higher-order
method-of-lines temporal integration algorithms.

Vector-field decomposition. The velocity in the low Mach number equations can
be split into two components,

v = u+∇ζ,

where ∇ · u = 0 is a divergence-free (solenoidal or vortical) component, and
therefore,

∇ · v =∇
2ζ = S(ρ, c, t).

This is a Poisson problem for ζ that is well-posed for appropriate boundary condi-
tions on v. Specifically, periodic boundary conditions on v imply periodic boundary
conditions for u and ζ . At physical boundaries where a Dirichlet condition (15) is
specified for the normal component of the velocity, we set un = 0 and use Neumann
conditions for the Poisson solve, ∂ζ/∂n = vn .

We can now define a more general vector-field decomposition that plays the role
of the Hodge decomposition in incompressible flow. Given a vector field ṽ and a
density ρ, we can decompose ṽ into three components

ṽ = u+∇ζ + ρ−1
∇ψ.

This decomposition can be obtained by using the condition ∇ · u= 0 and ∇
2ζ = S,

which allows us to define a density-weighted Poisson equation for ψ ,

∇ · (ρ−1
∇ψ)=−∇ · (ṽ−∇ζ )=−∇ · ṽ+ S(ρ, c, t).

Let L−1
ρ denote the solution operator to the density-dependent Poisson problem,

formally,
L−1
ρ = [∇ · (ρ

−1
∇)]−1,

and also define a density-dependent projection operator Pρ defined through its
action on a vector field w,

Pρw = w− ρ−1
∇[L−1

ρ (∇ ·w)].

This is a well-known variable-density generalization [2] of the constant-density
projection operator Pw = w−∇[∇

−2(∇ ·w)]. We can now write

u =Pρ(ṽ−∇ζ )=Pρ ṽ+ ρ−1
∇[L−1

ρ S(ρ, c, t)] −∇ζ.

This gives
v = u+∇ζ =RS(ṽ),
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where we have introduced an affine transformation RS(ρ, c, t) that depends on ρ,
c, and t through S(ρ, c, t) and is defined via its action on a vector field w,

RS(w)= w− ρ
−1

∇[L−1
ρ (∇ ·w− S)]. (16)

Note that application of RS requires only one Poisson solve and does not actually
require computing ζ .

Gauge formulation. The low Mach number system (8), (9), (11), and (12) has the
form

∂tρ =−∇ · (ρv),

∂t m+∇π = f (c, v, t),

∂tρ1 = h(c, v, t),

∇ · v = S(ρ, c, t), (17)

where m = ρv is the momentum density and f , h, and S are as defined in (8), (9),
and (11). At present, we will assume that these functions are smooth functions
of time, which is only justified in the presence of stochastic forcing terms in a
linearized setting. We note that, for the constrained system, ρ is not an independent
variable because of the EOS constraint (13); however, we will retain the evolution
of ρ with the implicit understanding that the evolution must be constrained so that
ρ and c remain consistent with (13).

To define the gauge formulation, we introduce a new variable

m̃ = ρṽ = m+∇ψ,

where ψ is a gauge variable. We note that ψ is not uniquely determined; however,
the specific choice does not matter. If we choose the gauge so that ∂tψ = π , then
the momentum equation in (17) is equivalent to

∂t m̃ = f (ρ, v, c, t).

The appropriate boundary conditions for ψ are linked to the boundary conditions
on v; we set ψ to be periodic if v is periodic and employ a homogeneous Neumann
(natural) boundary condition ∂ψ/∂n = 0 if a Dirichlet condition (15) is specified
for the normal component of the velocity vn . Note that, in the spatially discrete
staggered formulation that we employ, the homogeneous Neumann condition fol-
lows automatically from the boundary conditions on velocity used to define the
appropriate divergence and gradient operators in the interior of the domain.

If we know m̃ and ρ, we can then define ṽ = m̃/ρ and compute v =RS(ṽ),
where RS is defined in (16). Thus, by using the gauge formulation, we can formally
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write the low Mach number equations in the form of an unconstrained initial value
problem

∂t m̃ = f (ρ(c),RS(ṽ), c, t), (18)

∂tρ1 = h(ρ(c),RS(ṽ), c, t). (19)

The utility of the gauge formulation is that, in fact, we do not need to know ψ in
order to determine v. Therefore, the time-evolution equation for ψ does not actually
need to be solved, and in particular, π does not need to be computed. Furthermore,
by adopting the gauge formulation, we can directly use a method-of-lines approach
for spatially discretizing the system (18)–(19) and then apply standard Runge–Kutta
temporal integrators to the resulting system of ordinary (stochastic) differential
equations.

It is important to emphasize that the actual independent physical variables in
the low Mach formulation (18)–(19) are the vortical (solenoidal) component of
velocity u and the concentration c. The density ρ = ρ(c) and the velocity v =
u+∇[∇

−2S(ρ, c, t)] are determined from u and c and the constraints; hence, they
can formally be eliminated from the system as can be seen in the linearized analysis
in Appendix A, which shows that fluctuations in the vortical velocity modes are
decoupled from the longitudinal fluctuations.

III. Temporal integration

Our spatiotemporal discretization follows a “method-of-lines” approach in which
we first discretize the equations (8), (9), (11), and (12) in space and then integrate
the resulting semicontinuum equations in time. Our uniform staggered-grid spatial
discretization of the low Mach number equations is relatively standard and is
described in Section IV. The main difficulty is the temporal integration of the
resulting equations in the presence of the EOS constraint. Our temporal integrators
are based on the gauge formulation (18)–(19) of the low Mach equations. The gauge
formulation is unconstrained and enables us to use standard temporal integrators
for initial-value problems. In the majority of this section, we assume that all of the
fields and differential operators have already been spatially discretized and focus
on the temporal integration of the resulting initial-value problem.

Because in the present schemes we handle both diffusive and advective fluxes
explicitly, the time-step size 1t is restricted by well-known CFL conditions. For
fluctuating hydrodynamics applications, the time step is typically limited by mo-
mentum diffusion,

αν =
ν1t
1x2 <

1
2d
,
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where d is the number of spatial dimensions and 1x is the grid spacing. The design
and implementation of numerical methods that handle momentum diffusion semi-
implicitly, as done in [73] for incompressible flow, is substantially more difficult for
the low Mach number equations because it requires a variable-coefficient implicit
fluid solver. We have recently developed an efficient Stokes solver for solving
variable-density and variable-viscosity time-dependent and steady Stokes problems
[10], and in future work, we will employ this solver to construct a semi-implicit
temporal integrator for the low Mach number equations.

Our temporal discretization will make use of the special form of the EOS and
the discretization of mass advection described in Section IV-C in order to strictly
maintain the EOS relation (13) between density and concentration in each cell at
all intermediate values. Therefore, no additional action is needed to enforce the
EOS constraint after an update of ρ1 and ρ. This is, however, only true to within
the accuracy of the Poisson solver and also roundoff, and it is possible for a slow
drifting off the EOS to occur over many time steps. In Section III-C, we describe a
correction that prevents such drifting and ensures that the EOS is obeyed at all times
to essentially roundoff tolerance. For simplicity, we will often omit the explicit
update for the density ρ and instead focus on updating ρ1 and the momentum
density m = ρv with the understanding that ρ is updated whenever ρ1 is.

III-A. Euler scheme. The foundation for our higher-order explicit temporal inte-
grators is the first-order Euler method applied to the gauge formulation (18)–(19).

Gauge-free Euler update. We use a superscript to denote the time step and the
point in time where a given term is evaluated, e.g., f n

≡ fD(ρ
n, vn, cn, tn), where

fD denotes the spatial discretization of f with analogous definitions for hn and Sn .
We also denote the time-step size with1t = tn+1

− tn . Assume that at the beginning
of time step n we know m̃n and we can then compute

vn
=Rn

S(ṽ
n)

by enforcing the constraint (17). Here Rn
S denotes the affine transformation (16)

with all terms evaluated at the beginning of the time step so that ∇ · vn
= Sn . An

Euler step for the low Mach equations then consists of the update

ρn+1
1 = ρn

1 +1t hn,

m̃n+1
= m̃n

+1t f n (20)

together with an update of the density ρn+1 consistent with ρn+1
1 .

At the beginning of the next time step, vn+1 will be calculated from m̃n+1 by
applying Rn+1

S , and it is only vn+1 that will actually be used during time step n+1.
We therefore do not need to explicitly store m̃n+1 and can instead replace it with
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mn+1
= ρn+1vn+1 without changing any of the observable results. This is related

to the fact that the gauge is de facto arbitrary and, in the present setting, the gauge
formulation is simply a formalism to put the equations in an unconstrained form
suitable for method of lines discretization. The difference between m̃ and m is a
(discrete) gradient of a scalar. Since our temporal integrators only use linear combi-
nations of the intermediate values, the difference between the final result for m̃n+1

and mn is also a gradient of a scalar and replacing m̃n+1 with mn+1 simply amounts
to redefining the (arbitrary) gauge variable. For these reasons, the Euler advance,

ρn+1
1 = ρn

1 +1t hn,

mn+1
= ρn+1Rn+1

S [(ρ
n+1)−1(mn

+1t f n)], (21)

is analytically equivalent to (20). We will use this form as the foundation for
our temporal integrators. The equivalence to the gauge form implies that the
update specified by (21) can be viewed as an explicit update in spite of the formal
dependence of the update on the solution at both old and new time levels.

Stochastic forcing. Thermal fluctuations cannot be straightforwardly incorporated
in (21) because it is not clear how to define Rn+1

S . In the deterministic setting, S is
a function of concentration and density and can be evaluated pointwise at time level
n+1. When the white-in-time stochastic concentration flux 9 is included, however,
S cannot be evaluated at a particular point of time. Instead, one must think of 9 as
representing the average stochastic flux over a given time interval δt , which can be
expressed in terms of the increments

√
δtW̃ of the underlying Wiener processes,

9(δt, W̃)=

√
2χρµ−1

c kB T
δt 1V

W̃ ,

where W̃ is a collection of normal variates generated using a pseudorandom number
generator and 1V is the volume of the hydrodynamic cells. Similarly, the average
stochastic momentum flux over a time step is modeled as

6(δt,W)=

√
ηkB T
δt 1V

(W +W T ),

where W are normal random variates. As described in more detail in [73], stochastic
fluxes are spatially discretized by generating normal variates on the faces of the
grid on which the corresponding variable is discretized independently at each time
step. As mentioned earlier, the volume of the grid cell appears here because it
expresses the spatial coarse-graining length scale (i.e., the degree of coarse-graining
for which a fluid element with discrete molecules can be modeled by continuous
density fields) implicit in the equations of fluctuating hydrodynamics. Similarly,
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the time interval δt ∼1t expresses the typical time scale at which the mass and
momentum transfer can be modeled with low Mach number hydrodynamics.

With this in mind, we first evaluate the velocity divergence associated with the
constraint using the particular sample of 9,

S =−(ρ−1β)∇ · [ρχ∇c+9(δt, W̃)].

We then define a discrete affine operator RF (δt, W̃) in terms of its action on the
momentum m

[RF (δt, W̃)](m)= ρRS(ρ
−1m).

Using this shorthand notation, the momentum update in (21) in the presence of
thermal fluctuations can be written as

mn+1
=
[
Rn+1

F (1t, W̃n+1)
]
(mn
+1t f n).

Observe that this is a conservative momentum update since the application of RF

subtracts the (discrete) gradient of a scalar from the momentum. In actual imple-
mentation, it is preferable to apply Rn+1

F at the beginning of the time step n+ 1,
instead of at the end of time step n, once the value Sn+1 is computed from the
diffusive and stochastic fluxes for the concentration.

Euler–Maruyama update. Following the above discussion, we can write an Euler–
Maruyama temporal integrator for the low Mach number equations in the shorthand
notation,

mn
= [Rn

F (1t, W̃n)](m̃n),

ρn+1
1 = ρn

1 +1t hn
+ ȟn(1t, W̃n),

m̃n+1
= mn

+1t f n
+ f̌ n(1t,Wn), (22)

where Wn and W̃n are collections of standard normal variates generated using
a pseudorandom number generator independently at each time step. Here the
deterministic increments are written using the shorthand notation

f =∇ · [−ρvvT
+ η(∇v+∇

T v)] + ρg,

h =∇ · (−ρ1v+ ρχ∇c).

The stochastic increments are written in terms of

f̌ (δt,W)= [∇ ·6(δt,W)]δt =∇ ·

[√
η(kB T )δt
1V

(W +W T )

]
,

ȟ(δt, W̃)= [∇ ·9(δt, W̃)]δt =∇ ·

[√
2χρµ−1

c (kB T )δt
1V

W̃
]
,

where W̃ and W are vectors of standard Gaussian variables [18].
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III-B. Higher-order temporal integrators. A good strategy for composing higher-
order temporal integrators for the low Mach number equations is to use a linear
combination of several projected Euler steps of the form (22). In this way, the
higher-order integrators inherit the properties of the Euler step. In our case, this
will be very useful in constructing conservative discretizations that strictly maintain
the EOS constraint and only evaluate fluxes at states that strictly obey the EOS
constraint.

The incorporation of stochastic forcing in the Runge–Kutta temporal integrators
that we use is described in [29; 18]; here we only summarize the resulting schemes.
We note that the stochastic terms should be considered additive noise even though
we evaluate them using an instantaneous state like multiplicative noise [73].

Explicit trapezoidal rule. A weakly second-order temporal integrator for (18)–(19)
is provided by the explicit trapezoidal rule, in which we first take a predictor Euler
step

mn
= [Rn

F (1t, W̃n)](m̃n),

ρ
?,n+1
1 = ρn

1 +1t hn
+ ȟn(1t, W̃n), (23)

m̃?,n+1
= mn

+1t f n
+ f̌ n(1t,Wn). (24)

The corrector step is a linear combination of the predictor and another Euler update,

m?,n+1
=
[
R?,n+1

F (1t, W̃n)
]
(m̃?,n+1),

ρn+1
1 =

1
2ρ

n
1 +

1
2

[
ρ
?,n+1
1 +1t h?,n+1

+ ȟ?,n+1(1t, W̃n)
]
, (25)

m̃n+1
=

1
2 mn
+

1
2

[
m?,n+1

+1t f ?,n+1
+ f̌ ?,n+1(1t,Wn)

]
, (26)

and reuses the same random numbers Wn and W̃n as the predictor step.
Note that both the predicted and the corrected values for density and concentration

obey the EOS. We numerically observe that the trapezoidal rule does exhibit a slow
but systematic numerical drift in the EOS, and therefore, it is necessary to use the
correction procedure described in Section III-C at the end of each time step. The
analysis in [18] indicates that for the incompressible case the trapezoidal scheme
exhibits second-order weak accuracy in the nonlinear and linearized settings.

Explicit midpoint rule. An alternative second-order scheme is the explicit midpoint
rule, which can be summarized as follows. First we take a projected Euler step to
estimate midpoint values (denoted here with superscript ?, n+ 1/2),

mn
=
[
Rn

F
( 1

21t, W̃n
1
)]
(m̃n),

ρ
?,n+1/2
1 = ρn

1 +
1
21t hn

+ ȟn( 1
21t, W̃n

1
)
,

m̃?,n+1/2
= mn

+
1
21t f n

+ f̌ n( 1
21t,Wn

1
)
, (27)
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and then we complete the time step with another Euler-like update

m?,n+1/2
=
[
Rn+1/2

F (1t, W̃n)
](

m̃?,n+1/2),
ρn+1

1 = ρn
1 +1t h?,n+1/2

+ ȟ?,n+1/2(1t, W̃n),

m̃n+1
= mn

+1t f ?,n+1/2
+ f̌ ?,n+1/2(1t,Wn), (28)

where the standard Gaussian variates

W̃n
=

W̃n
1 + W̃n

2
√

2

and the vectors of standard normal variates W̃n
1 and W̃n

2 are independent and
similarly for Wn

1 and Wn
2 . Note that W̃n

1 and Wn
1 are used in both the predictor and

the corrector stages while W̃n
2 and Wn

2 are used in the corrector only. Physically,
the random numbers Wn

1 /
√

2 (and similarly for W̃n
1 ) correspond to the increments

of the underlying Wiener processes 1B1 =
√
1t/2 Wn

1 over the first half of the
time step, and the random numbers Wn

2 /
√

2 correspond to the Wiener increments
for the second half of the time step [18].

Note that both the midpoint and the endpoint values for density and concentration
obey the EOS. We numerically observe that the midpoint rule does not exhibit a
systematic numerical drift in the EOS and can therefore be used without the cor-
rection procedure described in Section III-C. The analysis in [18] indicates that for
the incompressible case the midpoint scheme exhibits second-order weak accuracy
in the nonlinear setting. Furthermore, in the linearized setting, it reproduces the
steady-state covariances of the fluctuating fields to third order in the time-step size.

Three-stage Runge–Kutta (RK3) rule. We have also tested and implemented the
three-stage Runge–Kutta scheme that was used in [29; 73]. This scheme can be
expressed as a linear combination of three Euler steps. The first stage is a predictor
Euler step,

mn
= [Rn

F (1t, W̃n)](m̃n),

ρ?1 = ρ
n
1 +1t hn

+ ȟn(1t, W̃n), (29)

m̃?
= mn

+1t f n
+ f̌ n(1t,Wn). (30)

The second stage is a midpoint predictor

m?
= [R?

F (1t, W̃ ?,n)](m̃?),

ρ??1 =
3
4ρ

n
1 +

1
4 [ρ

?
1 +1t h?+ ȟ?(1t, W̃ ?,n)], (31)

m̃??
=

3
4 mn
+

1
4 [m

?
+1t f ?+ f̌ ?(1t,W ?,n)], (32)
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and a final corrector stage completes the time step

m??
= [R??

F (1t, W̃ ??,n)](m̃??),

ρn+1
1 =

1
3ρ

n
1 +

2
3 [ρ

??
1 +1t h??+ ȟ??(1t, W̃ ??,n)], (33)

m̃n+1
=

1
3 mn
+

2
3 [m

??
+1t f ??+ f̌ ??(1t,W ??,n)]. (34)

Here the stochastic fluxes between different stages are related to each other via

Wn
=Wn

1 +
2
√

2+
√

3
5

Wn
2 ,

W ?,n
=Wn

1 +
−4
√

2+ 3
√

3
5

Wn
2 ,

W ??,n
=Wn

1 +

√
2− 2
√

3
10

Wn
2 , (35)

where Wn
1 and Wn

2 are independent and generated independently at each RK3 step
(similarly for W̃ ). The weights of Wn

2 are chosen to maximize the weak order of
accuracy of the scheme while still using only two random samples of the stochastic
fluxes per time step [18].

The RK3 method is third-order accurate deterministically and stable even in
the absence of diffusion/viscosity (i.e., for advection-dominated flows). Note that
the predicted, the midpoint, and the endpoint values for density and concentration
all obey the EOS. We numerically observe that the RK3 scheme does exhibit a
systematic numerical drift in the EOS, and therefore, it is necessary to use the
correction procedure described in Section III-C at the end of each time step. The
analysis in [18] indicates that for the incompressible case the RK3 scheme exhibits
second-order weak accuracy in the nonlinear setting. In the linearized setting, it
reproduces the steady-state covariances of the fluctuating fields to third order in the
time-step size.

III-C. EOS drift. While in principle our temporal integrators should strictly main-
tain the EOS, roundoff errors and the finite tolerance employed in the iterative
Poisson solver lead to a small drift in the constraint that can, depending on the
specific scheme, lead to an exponentially increasing violation of the EOS over many
time steps. In order to maintain the EOS at all times to within roundoff tolerance,
we periodically apply a globally conservative L2 projection of ρ and ρ1 onto the
linear EOS constraint.

This projection step consists of correcting ρ1 in cell k using

(ρ1)k← A(ρ1)k − B(ρ2)k −
1
N

∑
k′
[A(ρ1)k′ − B(ρ2)k′] +

1
N

∑
k′
(ρ1)k′,
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where N is the number of hydrodynamic cells in the system and

A =
ρ2

1

ρ2
1+ ρ

2
2

and B =
ρ1ρ2

ρ2
1+ ρ

2
2
.

Note that the above update, while nonlocal in nature, conserves the total mass∑
k′(ρ1)k′ . A similar update applies to ρ2, or equivalently, ρ = ρ1+ ρ2.

IV. Spatial discretization

The spatial discretization we employ follows closely the spatial discretization of
the constant-coefficient incompressible equations described in [73]. Therefore,
we focus here on the differences, specifically, the use of conserved variables, the
handling of the variable-density projection and variable-coefficient diffusion, and
the imposition of the low Mach number constraint. Note that the handling of the
stochastic momentum and mass fluxes is identical to that described in [73].

For simplicity of notation, we focus on two-dimensional problems with straight-
forward generalization to three spatial dimensions. Our spatial discretization follows
the commonly used MAC approach [43], in which the scalar conserved quantities ρ
and ρ1 are defined on a regular Cartesian grid. The vector conserved variables
m= ρv are defined on a staggered grid such that the k-th component of momentum
is defined on the faces of the scalar-variable Cartesian grid in the k-th direction; see
Figure 1. For simplicity of notation, we often denote the different components of
velocity as v= (u, v) in two dimensions and v= (u, v, w) in three dimensions. The
terms “cell-centered”, “edge-centered”, and “face-centered” refer to spatial locations
relative to the underlying scalar grid. Our discretization is based on calculating
fluxes on the faces of a finite-volume grid and is thus locally conservative. It is
important to note, however, that for the MAC grid different control volumes are
used for the scalars and the components of the momentum; see Figure 1.

(i, j)

ρ, ρ1

(i, j+1/2)

(i+1/2, j)

(i, j−1/2)

(i−1/2, j) mx

my

Figure 1. Staggered (MAC) finite-volume discretization on a uniform Cartesian two-
dimensional grid. Left: control volume and flux discretization for cell-centered scalar fields
such as densities ρ and ρ1. Middle: control volume for the x-component of face-centered
vector fields such as mx . Right: control volume for the y-component of face-centered
vector fields such as m y .
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From the cell-centered ρ and ρ1, we can define other cell-centered scalar quanti-
ties, notably, the concentration ci, j = (ρ1)i, j/ρi, j and the transport quantities χi, j

and ηi, j , which typically depend on the local density ρi, j and concentration ci, j

(and temperature for nonisothermal models) and can, in general, also depend on the
spatial position of the cell (x, y)= (i1x, j1y). In order to define velocities, we
need to interpret the continuum relationship m = ρv on the staggered grid. This is
done by defining face-centered scalar quantities obtained as an arithmetic average of
the corresponding cell-centered quantities in the two neighboring cells. Specifically,
we define

ρi+1/2, j =
ρi, j + ρi+1, j

2
and ui+1/2, j =

(mx)i+1/2, j

ρi+1/2, j
, (36)

except at physical boundaries, where the value is obtained from the imposed
boundary conditions (see Section IV-E). Arithmetic averaging is only one possible
interpolation from cells to faces [2]. In general, other forms of averaging such as a
harmonic or geometric average or higher-order, wider stencils [1; 29] can be used.
Most components of the spatial discretization can easily be generalized to other
choices of interpolation. As we explain later, the use of linear averaging simplifies
the construction of conservative advection.

IV-A. Diffusion. In this section, we describe the spatial discretization of the dif-
fusive mass flux term ∇ · ρχ∇c in (9). The discretization is based on conservative
centered differencing [29; 18]

(∇ · ρχ∇c)i, j =1x−1
[(
ρχ

∂c
∂x

)
i+1/2, j

−

(
ρχ

∂c
∂x

)
i−1/2, j

]
+1y−1

[(
ρχ

∂c
∂y

)
i, j+1/2

−

(
ρχ

∂c
∂y

)
i, j−1/2

]
, (37)

where, for example,(
ρχ

∂c
∂x

)
i+1/2, j

= (ρi+1/2, j )(χi+1/2, j )
(ci+1, j − ci, j

1x

)
(38)

and χi+1/2, j is an interpolated face-centered diffusion coefficient, for example, as
done for ρ in (36),

χi+1/2, j =
χi, j +χi+1, j

2
,

except at physical boundaries, where the value is obtained from the imposed bound-
ary conditions.

Regardless of the specific form of the interpolation operator, the same face-
centered diffusion coefficient χi+1/2, j must be used when calculating the magnitude
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of the stochastic mass flux on face (i + 1/2, j),

(9x)i+1/2, j =

√
2χi+1/2, j (ρµ

−1
c )i+1/2, j kB T W̃i+1/2, j .

This matches the covariance of the discrete stochastic mass increments ∇ ·9 with
the discretization of the diffusive dissipation operator ∇ · ρχ∇ given in (37)–(38).
This matching ensures discrete fluctuation-dissipation balance in the linearized
setting [29]. Specifically, at thermodynamic equilibrium, the static covariance of the
concentration is determined from the equilibrium value of (ρµ−1

c ) (thermodynamics)
independently of the particular values of the transport coefficients (dynamics) as
seen in (A-1) and dictated by statistical mechanics principles.

IV-B. Viscous terms. In [73], a Laplacian form of the viscous term η∇2v is as-
sumed, which is not applicable when viscosity is spatially varying and ∇ ·v= S 6= 0.
In two dimensions, the divergence of the viscous stress tensor in the momentum
equation (8), neglecting bulk viscosity effects, is

∇ · [η(∇v+∇
T v)] =

[
2 ∂
∂x (η

∂u
∂x )+

∂
∂y (η

∂u
∂y + η

∂v
∂x )

2 ∂
∂y (η

∂v
∂y )+

∂
∂x (η

∂v
∂x + η

∂u
∂y )

]
. (39)

The discretization of the viscous terms requires η at cell centers and edges (note
that in two dimensions the edges are the same as the nodes (i + 1/2, j + 1/2) of
the grid). The value of η at a node is interpolated as the arithmetic average of the
four neighboring cell centers,

ηi+1/2, j+1/2 =
1
4(ηi, j + ηi+1, j+1+ ηi+1, j + ηi, j+1),

except at physical boundaries, where the values are obtained from the prescribed
boundary conditions. The different viscous friction terms are discretized by straight-
forward centered differences. Explicitly, for the x-component of momentum,[

∂

∂x

(
η
∂u
∂x

)]
i+1/2, j

=1x−1
[(
η
∂u
∂x

)
i+1, j
−

(
η
∂u
∂x

)
i, j

]
with (

η
∂u
∂x

)
i, j
= ηi, j

(
ui+1/2, j − ui−1/2, j

1x

)
.

Similarly, for the term involving a second derivative in y,[
∂

∂y

(
η
∂u
∂y

)]
i+1/2, j

=1y−1
[(
η
∂u
∂y

)
i+1/2, j+1/2

−

(
η
∂u
∂y

)
i+1/2, j−1/2

]
with (

η
∂u
∂y

)
i+1/2, j+1/2

= ηi+1/2, j+1/2

(
ui+1/2, j+1− ui+1/2, j

1y

)
.
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A similar construction is used for the mixed-derivative term[
∂

∂y

(
η
∂v

∂x

)]
i+1/2, j

=1y−1
[(
η
∂v

∂x

)
i+1/2, j+1/2

−

(
η
∂v

∂x

)
i+1/2, j−1/2

]
with (

η
∂v

∂x

)
i+1/2, j+1/2

= ηi+1/2, j+1/2

(
vi+1, j+1/2− vi, j+1/2

1x

)
.

The stochastic-stress-tensor discretization is described in more detail in [73] and
applies in the present context as well. For the low Mach number equations, just as
for the compressible equations, the symmetric form of the stochastic stress tensor
must be used in order to ensure discrete fluctuation-dissipation balance between
the viscous dissipation and stochastic forcing. Additionally, when η is not spatially
uniform, the same interpolated viscosity ηi+1/2, j+1/2 as used in the viscous terms
must be used when calculating the amplitude in the stochastic forcing

√
ηkB T at

the edges (nodes) of the grid.

IV-C. Advection. It is challenging to construct spatiotemporal discretizations that
conserve the total mass while remaining consistent with the equation of state [67;
65; 58] as ensured in the continuum context by the constraint (11). We demonstrate
here how the special linear form of the constraint (13) can be exploited in the
discrete context. Following [73], we spatially discretize the advective terms in (9)
using a centered (skew-adjoint [54]) discretization

[∇ · (ρ1v)]i, j =1x−1
[(ρ1)i+1/2, j ui+1/2, j − (ρ1)i−1/2, j ui−1/2, j ]

+1y−1
[(ρ1)i, j+1/2vi, j+1/2− (ρ1)i, j−1/2vi, j−1/2] (40)

and similarly for (12). We would like this discrete advection to maintain the equation
of state (13) at the discrete level, that is, maintain the constraint relating (ρ1)i, j

and (ρ2)i, j in every cell (i, j).
Because the different dimensions are decoupled and the divergence is simply the

sum of the one-dimensional difference operators, it is sufficient to consider (9) in
one spatial dimension. The method-of-lines discretization is given by the system of
ODEs, one differential equation per cell i ,

(∂tρ1)i =1x−1(Fi+1/2− Fi−1/2)−1x−1
[(ρ1)i+1/2ui+1/2− (ρ1)i−1/2ui−1/2]

and similarly for (∂tρ2)i . As a shorthand, denote the quantity that appears in (13)
with

δ =
ρ1

ρ1
+
ρ2

ρ2
= 1.

If we use the linear interpolation (36) to calculate face-centered densities, then
because of the linearity of the EOS the face-centered densities obey the EOS if the



70 A. DONEV, A. NONAKA, Y. SUN, T. G. FAI, A. L. GARCIA AND J. B. BELL

cell-centered ones do since δi+1/2 = (δi + δi+1)/2= 1. The rate of change of δ in
cell i is

1x(∂tδ)i = (ρ
−1β)(Fi+1/2− Fi−1/2)− [δi+1/2ui+1/2− δi−1/2ui−1/2]

= (ρ−1β)(Fi+1/2− Fi−1/2)− (ui+1/2− ui−1/2)= 0.

This simple calculation shows that the EOS constraint δ = 1 is obeyed discretely
in each cell at all times if it is initially satisfied and the velocities used to advect
mass obey the discrete version of the constraint (11),

Si, j =1x−1(ui+1/2, j − ui−1/2, j )+1y−1(vi, j+1/2− vi, j−1/2) (41)

=

( 1
ρ1
−

1
ρ2

)[
1x−1(Fi+1/2, j − Fi−1/2, j )+1y−1(Fi, j+1/2− Fi, j−1/2)

]
,

in two dimensions. Our algorithm ensures that advective terms are always evaluated
using a discrete velocity field that obeys this constraint. This is accomplished by
using a discrete projection operator as we describe in the next section.

The spatial discretization of the advection terms in the momentum equation (8) is
constructed using centered differences on the corresponding shifted (staggered) grid
as described in [73]. For example, for the x-component of momentum mx = ρu,

[∇ · (mxv)]i+1/2, j =1x−1
[(mx u)i+1, j − (mx u)i, j ]

+1y−1
[(mxv)i+1/2, j+1/2− (mxv)i+1/2, j−1/2], (42)

where simple averaging is used to interpolate momenta to the cell centers and edges
(nodes) of the grid, for example,

(mx u)i, j = (mx)i, j ui, j =
(mx)i−1/2, j + (mx)i+1/2, j

2
ui−1/2, j + ui+1/2, j

2
. (43)

Because of the linearity of the interpolation procedure, the interpolated discrete
velocity used to advect mx obeys the constraint (41) on the shifted grid with a
right-hand side Si+1/2, j interpolated using the same arithmetic average used to
interpolate the velocities. In particular, in the incompressible case, all variables,
including momentum, are advected using a discretely divergence-free velocity,
ensuring discrete fluctuation-dissipation balance [73; 18].

It is well-known that the centered discretization of advection we employ here is
not robust for advection-dominated flows, and higher-order limiters and upwinding
schemes are generally preferred in the deterministic setting [5]. However, these
more robust advection schemes add artificial dissipation, which leads to a violation
of discrete fluctuation-dissipation balance [18]. In Appendix B, we describe an
alternative filtering procedure that can be used to handle strong advection while
continuing to use centered differencing.
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IV-D. Discrete projection. We now briefly discuss the spatial discretization of the
affine operator RS defined by (16) as used in our explicit temporal integrators. The
discrete projection takes a face-centered (staggered) discrete velocity field ṽ= (ũ, ṽ)
and a velocity divergence S and projects v =RS(ṽ) onto the constraint (41) in a
conservative manner. Specifically, the projection consists of finding a cell-centered
discrete scalar field φ such that

ρv = ρṽ−∇φ and ∇ · v = S,

where the gradient is discretized using centered differences, e.g.,

vi+1/2, j = ṽi+1/2, j −

(
1

ρi+1/2, j

)(
φi+1, j −φi, j

1x

)
. (44)

The pressure correction φ is the solution to the variable-coefficient discrete Poisson
equation,

1
1x

[(
1

ρi+1/2, j

)(
φi+1, j −φi, j

1x

)
−

(
1

ρi−1/2, j

)(
φi, j −φi, j−1

1x

)]
+

1
1y

[(
1

ρi, j+1/2

)(
φi, j+1−φi, j

1y

)
−

(
1

ρi, j−1/2

)(
φi, j −φi, j−1

1y

)]
= Si, j −

[(
ũi+1/2, j − ũi−1/2, j

1x

)
+

(
ṽi, j+1/2− ṽi, j−1/2

1y

)]
, (45)

which can be solved efficiently using a standard multigrid approach [2].

IV-E. Boundary conditions. The handling of different types of boundary condi-
tions is relatively straightforward when a staggered grid is used and the physical
boundaries are aligned with the cell boundaries for the scalar grid. Interpolation is
not used to obtain values for faces, nodes, or edges of the grid that lie on a physical
boundary since this would require “ghost” values at cell centers lying outside of
the physical domain. Instead, whenever a value of a physical variable is required at
a face, node, or edge lying on a physical boundary, the boundary condition is used
to obtain that value. Similarly, centered differences for the diffusive and viscous
fluxes that require values outside of the physical domain are replaced by one-sided
differences that only use values from the interior cell bordering the boundary and
boundary values.

For example, if the concentration is specified at the face (i+1/2, j), the diffusive
flux discretization (38) is replaced with(

ρχ
∂c
∂x

)
i+1/2, j

= (ρi+1/2, j )(χi+1/2, j )

(
ci+1/2, j − ci, j

1x/2

)
,

where ci+1/2, j is the specified boundary value, the density ρi+1/2, j is obtained
from ci+1/2, j using the EOS constraint, and the diffusion coefficient χi+1/2, j is



72 A. DONEV, A. NONAKA, Y. SUN, T. G. FAI, A. L. GARCIA AND J. B. BELL

calculated at the specified values of concentration and density. Similar straightfor-
ward one-sided differencing is used for the viscous fluxes. As discussed in [73],
the use of second-order one-sided differencing is not required to achieve global
second-order accuracy and would make the handling of the stochastic fluxes more
complicated because it leads to a nonsymmetric discrete Laplacian. Note that for
the nonlinear low Mach number equations our approach is subtly different from
linearly extrapolating the value in the ghost cell ci+1, j = 2ci+1/2, j−ci . Namely, the
extrapolated value might be unphysical, and it might not be possible to evaluate the
EOS or transport coefficients at the extrapolated concentration. For Neumann-type
or zero-flux boundary conditions, the corresponding diffusive flux is set to zero for
any faces of the corresponding control volume that lie on physical boundaries, and
values in cells outside of the physical domain are never required. The corresponding
handling of the stochastic fluxes is discussed in detail in [73].

The evaluation of advective fluxes for the scalars requires normal components of
the velocity at the boundary. For faces of the grid that lie on a physical boundary,
the normal component of the velocity is determined from the value of the diffusive
mass flux at that face using (15). Therefore, these velocities are not independent
variables and are not solved for or modified by the projection RS . Specifically,
the discrete pressure φ is only defined at the cell centers in the interior of the
grid, and the discrete Poisson equation (45) is only imposed on the interior faces
of the grid. Therefore, no explicit boundary conditions for φ are required when
the staggered grid is used, and the natural homogeneous Neumann conditions are
implied. Advective momentum fluxes are only evaluated on the interior faces and
thus do not use any values outside of the physical domain.

IV-F. Summary of Euler–Maruyama method. By combining the spatial discre-
tization described above with one of the temporal integrators described in Section III,
we can obtain a finite-volume solver for the fluctuating low Mach equations. For the
benefit of the reader, here we summarize our implementation of a single Euler step
(22). This forms the core procedure that the higher-order Runge–Kutta schemes
employ several times during one time step.

(1) Generate the vectors of standard Gaussian variates Wn and W̃n .

(2) Calculate diffusive and stochastic fluxes for ρ1 using (38),

Fn
= (ρχ∇c)n +9n(1t, W̃n).

(3) Solve the Poisson problem (45) with

Sn
=−

( 1
ρ1
−

1
ρ2

)
∇ · Fn

to obtain the velocity vn from ṽn
= m̃n/ρn using (44), enforcing ∇ · vn

= Sn .
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(4) Calculate viscous and stochastic momentum fluxes using (39),

∇ · [η(∇v+∇
T v)]n +∇ · [6n(1t,Wn)].

(5) Calculate external forcing terms for the momentum equation such as the
contribution −ρn g due to gravity.

(6) Calculate advective fluxes for mass and momentum using (40) and (42).

(7) Update mass and momentum densities, including advective, diffusive, stochas-
tic, and external forcing terms, to obtain ρn+1, ρn+1

1 , and m̃n+1. Note that this
update preserves the EOS constraint as explained in Section IV-C.

We have tested and validated the accuracy of our methods and numerical imple-
mentation using a series of standard deterministic tests as well as by examining the
equilibrium spectrum of the concentration and velocity fluctuations [29; 73; 18].
The next two sections present further verification and validation in the context of
nonequilibrium systems.

V. Giant concentration fluctuations

Advection of concentration by thermal velocity fluctuations in the presence of large
concentration gradients leads to the appearance of giant fluctuations of concentration,
as has been studied theoretically and experimentally for more than a decade [77;
12; 75; 74]. These giant fluctuations were previously simulated in the absence
of gravity in three dimensions by some of us in [73], and good agreement was
found with experimental results [75]. In those previous studies, the incompressible
equations were used; that is, it was assumed that concentration was a passively
advected scalar. However, it is more physically realistic to account for the fact that
the properties of the fluid, notably the density and the transport coefficients, depend
on the concentration. In [12], a series of experiments were performed to study the
temporal evolution of giant concentration fluctuations during the diffusive mixing of
water and glycerol, starting with a glycerol mass fraction of c = 0.39 in the bottom
half of the experimental domain and c = 0 in the top half. Because it is essentially
impossible to analytically solve the full system of fluctuating equations in the
presence of spatial inhomogeneity and nontrivial boundary conditions, the existing
theoretical analysis of the diffusive mixing process [77] makes a quasiperiodic
constant-coefficient incompressible approximation.

For simplicity, in this section, we focus on a time-independent problem and
study the spectrum of steady-state concentration fluctuations in a mixture under
gravity in the presence of a constant concentration gradient. This extends the study
reported in [73] to account for the fact that the density, viscosity, and diffusion
coefficient depend on the concentration. For simplicity, we do two-dimensional
simulations since for this problem there is no difference between the spectra of
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concentration fluctuations in two and three dimensions [73] (note, however, that in
real space, unlike in Fourier space, the effect of the fluctuations on the transport is
very different in two and three dimensions). Furthermore, in these simulations, we
do not include a stochastic flux in the concentration equation; i.e., we set 9 = 0 so
that all fluctuations in the concentration arise from being out of thermodynamic
equilibrium. With this approximation, we do not need to model the chemical
potential of the mixture and obtain µc. This formulation is justified by the fact that
it is known experimentally that the nonequilibrium fluctuations are much larger
than the equilibrium ones for the conditions we consider [12].

In the simple linearized theory presented in Section A.2, several approximations
are made. The first one is that a quasiperiodic approximation is used even though
the actual system is not periodic in the y-direction. This source of error has already
been studied numerically in [73]. We also use a Boussinesq approximation where it
is assumed that ρ1 = ρ0+1ρ/2 and ρ2 = ρ0−1ρ/2, where 1ρ is a small density
difference between the two fluids, 1ρ/ρ0 � 1, so that density is approximately
constant and β � 1. More precisely, in the Boussinesq model, the gravity term
in the velocity equation only enters through the product βg, so the approximation
consists of taking the limit β→ 0 and g→∞ while keeping the product βg fixed.
The final approximation made in the simple theory is that the transport coefficients,
i.e., the viscosity and diffusion coefficients, are assumed to be constant. Here we
evaluate the validity of the constant-coefficient constant-density approximation
(ρ, η, and χ constant and β → 0), as well as the constant-density (Boussinesq)
approximation alone (ρ constant and β→ 0 but variable η and χ), by comparing
with the solution to the complete low Mach number equations (ρ, η, χ , and β
variable).

V-A. Simulation parameters. We base our parameters on the experimental studies
of diffusive mixing in a water-glycerol mixture as reported in [12]. The physical do-
main is 1 cm×0.25 cm discretized on a uniform 128×32 two-dimensional grid with a
thickness of 1 cm along the z-direction. Gravity is applied in the negative y- (vertical)
direction. Reservoir boundary conditions (15) are applied in the y-direction and
periodic boundary conditions in the x-direction. We set the concentration to c=0.39
on the bottom boundary and c = 0 on the top boundary and apply no-slip boundary
conditions for the velocity at both boundaries. The initial condition is c(t = 0)=
0.39(y/0.25− 1), which is close to the deterministic steady-state profile. A very
good fit to the experimental equation of state (dependence of density on concentra-
tion at standard temperature and pressure) over the whole range of concentrations of
interest is provided by the EOS (13) with the density of water set to ρ2=1 g/cm3 and
the density of glycerol set to ρ1=1.29 g/cm3. In these simulations, the magnitude of
the velocity fluctuations is very small, and we did not use filtering (see Appendix B).



LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS 75

Experimentally, the dependence of viscosity on glycerol mass fraction has been
fit to an exponential function [12], which we approximate with a quadratic function
over the range of concentrations of interest

η(c)= ρ(c)ν(c)= ρ0ν0 exp(2.06c+ 2.32c2)≈ ρ0ν0(1.0+ 0.66c+ 12c2), (46)

where ρ0 = 1 g/cm3 and experimental measurements estimate ν0 ≈ 10−2 cm2/s.
The dependence of the diffusion coefficient on the concentration has been studied
experimentally [19], but it is strongly affected by thermal fluctuations and spatial
confinement [24; 21; 26]. We approximate the dependence assuming a Stokes–
Einstein relation [25], which is in reasonable agreement with the experimental
results in [19] over the range of concentrations of interest here; we can write it as

χ(c)=
χ0η0

η(c)
≈ χ0(1.0− 2.2c+ 1.2c2), (47)

where experimental estimates for water-glycerol mixtures give χ0 ≈ 10−5 cm2/s,
with a Schmidt number Sc = ν0/χ0 ≈ 103. This very large separation of scales
between mass and momentum diffusion is not feasible to simulate with our explicit
temporal integration methods. Referring back to the simplified theory (A-7), which
in this case can be simplified further to

Sc,c(kx , ky = 0)=
〈
(δ̂c)(δ̂c)?

〉
≈

ν

ν+χ

kB T(
χηk4

x + h‖ρgβ
) h2
‖
, (48)

we see that for ν� χ the shape of the spectrum of the steady-state concentration
fluctuations, and in particular the cutoff wavenumber due to gravity, is determined
from the product χν and not χ and ν individually. Therefore, as also done in [73], we
choose χ0 and ν0 so that χ(c)ν(c) is kept at the physical value of 10−7 g·cm/s2, but
the Schmidt number is reduced by two orders of magnitude, Sc = ρ

−1
0 η(c̄)/χ(c̄)=

10, where c = 0.39/2 is an estimate of the average concentration. The condition
η(c̄) ≈ 10−3 g/(cm · s) and χ(c̄) ≈ 10−4 cm2/s gives our simulation parameters
ν0 ≈ 6.1× 10−4 cm2/s and χ0 ≈ 1.6× 10−4 cm2/s.

The physical value for gravity is g ≈ 103 cm/s2, and the solutal expansion
coefficient β(c)≈ 0.234 follows from ρ1 and ρ2. When employing the Boussinesq
approximation, in which gravity only enters through the product βg, we set ρ1 =

1.054 and ρ2 = 1.044 so that β = 0.01 and increase gravity by the corresponding
factor to g = 2.34 · 104 cm/s2 in order to keep βg fixed at the physical value. We
also performed simulations with a weaker gravity, g ≈ 102 cm/s2, which enhances
the giant fluctuations.

V-B. Results. We employ the explicit midpoint temporal integrator (which we
recall is third-order accurate for static covariances) and set 1t = 0.005 s, which
results in a diffusive Courant number ν1t/1x2

≈ 0.1. We skip the first 50,000
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Figure 2. Comparison between the simple theory (A-7) (lines) and numerical results
(symbols). Results are shown for standard gravity g ≈ 103 cm/s2 (the cutoff wavenumber
kg ≈ 246 cm−1) for the complete variable-coefficient variable-density low Mach model
(green upward triangles) and the constant-coefficient constant-density approximation
(red squares). Also shown are results for a weaker gravity, g ≈ 102 cm/s2 (the cutoff
wavenumber kg ≈ 138 cm−1), for the complete low Mach model (magenta pluses) and the
constant-coefficient constant-density approximation (cyan stars). For comparison, results
for g≈ 102 cm/s2 with variable viscosity η(c) but constant diffusion coefficient χ(c)=χ0
are also shown, for variable density (orange downward triangles) and the constant-density
(Boussinesq) approximation (indigo right-facing triangles). Finally, results for no gravity
are shown in the constant-coefficient approximation (black circles).

time steps (about five diffusion crossing times) and then collect samples from the
subsequent 50,000 time steps. We repeat this eight times to increase the statistical
accuracy and estimate error bars. To compare to the theory (A-7), we set the
concentration gradient to h‖ = 0.39/0.25 cm−1 and evaluate ρ ≈ 1.05 g/cm3 at
c = 0.39/2 from the equation of state. When computing the theory, we account
for errors in the discrete approximation to the continuum Laplacian by using the
effective wavenumber

k⊥ = kx
sin(kx1x/2)
(kx1x/2)

(49)

instead of the actual discrete wavenumber kx [73].
The results for the static spectrum of concentration fluctuations Sc,c(kx , ky = 0)=
〈(δ̂c)(δ̂c)?〉 as a function of the modified wavenumber k⊥ (49) are shown in Figure 2.
When there is no gravity, we see the characteristic giant-fluctuation power-law
spectrum of the fluctuations, modulated at small wavenumbers due to the presence of
the physical boundaries [73]. When gravity is present, fluctuations at wavenumber
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below the cutoff kg = [h‖ρgβ/(ηχ)]1/4 are suppressed. If we use a constant-
coefficient approximation, in which we reduce β = 0.01 so that ρ ≈ ρ(c) and
also fix the transport coefficients at η(c) = η(c) and χ(c) = χ(c), we observe
good agreement with the quasiperiodic theory (A-7). When we make the transport
coefficients dependent on the concentration as in (46) and (47), we observe a rather
small change in the spectrum. This is perhaps not unexpected because the simplified
theory (48) shows that only the product χη, and not χ and η individually, matters.
Since we used the Stokes–Einstein relation χ(c)η(c)= ρ0χ0ν0 = constant to select
the concentration dependence of the diffusion coefficient, the value of χη is constant
throughout the physical domain. For comparison, in Figure 2 we show results from
a simulation where we keep the concentration dependence of the viscosity (46)
but set the diffusion coefficient to a constant value, χ(c) = χ0, and we observe
a more significant change in the spectrum. Further employing the Boussinesq
approximation makes little difference, showing that the primary effect here comes
from the dependence of the transport coefficients on concentration.

This shows that, under the sort of parameters present in the experiments on
diffusive mixing in water-glycerol mixture, it is reasonable to make the Boussinesq
incompressible approximation; however, the spatial dependence of the viscosity
and diffusion coefficient cannot in general be ignored if quantitative agreement is
desired. In particular, time-dependent quantities such as dynamic spectra [76; 11]
depend on the values of χ and η and not just their product, and are thus expected
to be more sensitive to the details of their concentration dependence. Even though
the constant-coefficient approximation gives qualitatively the correct shape and a
better choice of the constant transport coefficients may improve its accuracy, there
is no simple procedure to a priori estimate what parameters should be used (but
see [77] for a proposal to average the constant-coefficient theory over the domain).
A direct comparison with experimental results is not possible until multiscale
temporal integrators capable of handling the extreme separation of time scales
between mass and momentum diffusion are developed. At present, this has only
been accomplished in the constant-coefficient incompressible limit (β = 0) [26],
and it remains a significant challenge to accomplish the same for the complete low
Mach number system.

VI. Diffusive mixing in hard-disk and hard-sphere fluids

In this section, we study the appearance of giant fluctuations during time-dependent
diffusive mixing. As a validation of the low Mach number fluctuating equations and
our algorithm, we perform simulations of diffusive mixing of two fluids of different
densities in two dimensions. We find excellent agreement between the results of low
Mach number (continuum) simulations and hard-disk molecular dynamics (particle)
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Figure 3. Diffusive mixing between two fluids of unequal densities, R = ρ2/ρ1 = 4,
with coloring based on concentration: red for the pure first component, c = 1, and blue
for the pure second component, c = 0. A smoothed shading is used for the coloring to
eliminate visual discretization artifacts. The simulation domain is periodic and contains
1282 hydrodynamic (finite-volume) cells. The top left panel shows the initial configuration,
which is the same for all simulations reported here. The top right panel shows the final
configuration at time t = 5800 as obtained using molecular dynamics. The bottom left
panel shows the final configuration obtained using deterministic hydrodynamics while the
bottom right panel shows the final configuration obtained using fluctuating hydrodynamics.

simulations. This nontrivial test clearly demonstrates the usefulness of low Mach
number models as a coarse-grained mesoscopic model for problems where sound
waves can be neglected.

Our simulation setup is illustrated in Figure 3. We consider a periodic square
box of length L along both the x- (horizontal) and y- (vertical) directions and
initially place all of the fluid of species one (colored red) in the middle third of the
domain; i.e., we set c = 1 for L/3≤ y ≤ 2L/3, and c = 0 otherwise, as shown in
the top left panel of the figure. The two fluids mix diffusively, and at the end of the
simulation, the concentration field shows a rough diffusive interface as confirmed
by molecular dynamics simulations shown in the top right panel of the figure. The
deterministic equations of diffusive mixing reduce to a one-dimensional model
due to the translational symmetry along the x-axis and would yield a flat diffusive
interface as illustrated in the bottom left panel of the figure. However, fluctuating
hydrodynamics correctly reproduces the interface roughness as illustrated in the
bottom right panel of the figure and demonstrated quantitatively below.

We consider here a binary hard-disk mixture in two dimensions. We use arbitrary
(molecular) units of length, time, and mass for convenience. All hard disks had
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a diameter σ = 1 in arbitrary units, and we set the temperature at kB T = 1. The
molecular mass for the first fluid component was fixed at m1 = 1 and for the
second component at m2 = Rm1. For mass ratio R = 1, the two types of disks are
mechanically identical, and therefore, the species label is simply a red-blue coloring
of the particles. In this case, ρ2 = ρ1 and the low Mach number equations reduce
to the incompressible equations of fluctuating hydrodynamics with a passively
advected concentration field. For the case of unequal particle masses, mechanical
equilibrium is obtained if the pressures in the two fluid components are the same.
It is well-known from statistical mechanics that for hard disks or hard spheres the
pressure is

P = Y (φ) · n · kB T,

where n = N/V is the number density and Y (φ) is a prefactor that only depends on
the packing fraction φ = n(πσ 2/4) and not on the molecular mass. Therefore, for a
mixture of disks or spheres with equal diameters, at constant pressure, the number
density and the packing fraction φ are constant independent of the composition.
The equation of state at constant pressure and temperature is therefore

1=
n1

n
+

n2

n
=

ρ1

nm1
+

ρ2

nm2
,

which is exactly of the form (13) with ρ1 = nm1 and ρ2 = nm2. The chemical
potential of such a mixture has the same concentration dependence as a low-density
gas mixture [49],

µ−1
c kB T = c(1− c)[cm2+ (1− c)m1].

VI-A. Hard-disk molecular dynamics. In order to validate the predictions of our
low Mach number model, we performed hard-disk molecular dynamics (HDMD)
simulations of diffusive mixing using a modification of the public-domain code
developed by the authors of [70]. We used a packing fraction of φ = 0.6 for all
simulations reported here. This packing fraction is close to the freezing transition
point but is known to be safely in the (dense) gas phase (there is no liquid phase for a
hard-disk fluid). The initial particle positions were generated using a nonequilibrium
molecular-dynamics simulation as in the hard-particle packing algorithm described
in [27; 28]. After the initial configuration was generated, the disks were assigned a
species according to their y-coordinate, and the mixing simulation was performed
using event-driven molecular dynamics.

In order to convert the particle data to hydrodynamic data comparable to that
generated by the fluctuating hydrodynamics simulations, we employed a grid of N 2

c
hydrodynamic cells that were each a square of linear dimension Lc = 10σ . At the
chosen packing fraction φ = 0.6, this corresponds to about 76 disks per hydrody-
namic cell, which is deemed a reasonable level of coarse-graining for the equations
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of fluctuating hydrodynamics to be a reasonably accurate model while still keeping
the computational demands of the simulations manageable. We performed HDMD
simulations for systems of size Nc = 64 and Nc = 128 cells and simulated the
mixing process to a final simulation time of t = 5800 units. The largest system
simulated had about 1.25 million disks (each simulation took about five days of
CPU time), which is well into the “hydrodynamic” rather than “molecular” scale.

Every 58 units of time, particle data was converted to hydrodynamic data for the
purposes of analysis and comparison to hydrodynamic calculations. There is not a
unique way of coarse-graining particle data to hydrodynamic data [78; 35]; however,
we believe that the large-scale (giant) concentration fluctuations studied here are
not affected by the particular choice. We therefore used a simple method consistent
with the philosophy of finite-volume conservative discretizations. Specifically, we
coarse-grained the particle information by sorting the particles into hydrodynamic
cells based on the position of their centroid as if they were point particles. We then
calculated ρ1 and ρ2 in each cell based on the total mass of each species contained
inside the given cell. Since all particles have equal diameter, other definitions that
take into account the particle shape and size give similar results.

VI-B. Hard-disk hydrodynamics. We now turn to hydrodynamic simulations of
the diffusive mixing of hard disks. Our hydrodynamic calculations use the same
grid of cells used to convert particle to hydrodynamic data. The only input required
for the hydrodynamic calculations, in addition to those provided by equilibrium
statistical mechanics, are the transport coefficients of the fluid as a function of
concentration, specifically, the shear viscosity η and the diffusion coefficient χ .

The values for the transport coefficients used in the spatiotemporal discretization,
as explained in [24; 26] and detailed in Appendix C, are not material constants
independent of the discretization. Rather, they are bare transport values η0 and χ0

measured at the length scales of the grid size. We assumed that the bare transport
coefficients obey the same scaling with the mass ratio R as predicted by Enskog
kinetic theory (C-1)–(C-2). As explained in Appendix C, theoretical arguments
and molecular-dynamics results suggest that renormalization effects for viscosity
are small and can be safely neglected. We have therefore fixed the viscosity in the
hydrodynamic calculations based on the molecular-dynamics estimate η0 = 2.5 for
the pure fluid with molecular mass m = 1 (see Section C.1). However, the bare
diffusion coefficient is strongly dependent on the size of the hydrodynamic cells
(held fixed in our calculations at 1x = 1y = 10) and on whether filtering (see
Appendix B) is used. Therefore, the value of χ0 needs to be adjusted based on
the spatial discretization in such a way as to match the behavior of the molecular-
dynamics simulations at length scales much larger than the grid spacing. We
describe the exact procedure we used to accomplish this in Section C.2.
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The time step in our explicit algorithm is limited by the viscous CFL number
αν = ν1t/1x2 < 1/4. Since the hydrodynamic calculations are much faster
compared to the particle simulations, we used the more expensive RK3 temporal
integrator with a relatively small time step 1t = 1.45, corresponding to αν ≈ 0.05
for c = 1. For R = 1 and Nc = 64, we employed a larger time step, 1t = 3.625
(αν ≈ 0.125), with no measurable temporal discretization artifacts for the quantities
studied here. We are therefore confident that the discretization errors in this study
are dominated by spatial discretization artifacts. In future work, we will explore
semi-implicit discretizations and study the effect of taking larger time steps on
temporal accuracy. Note that at these parameters for c = 1 the isothermal speed of
sound is cT ≈ 5.1 so that a compressible scheme would require a time step on the
order of 1t ∼ 1 (corresponding to advective CFL of about 1/2). By contrast, the
explicit low Mach number algorithm is stable for 1t . 7.5. This modest gain is
due to the small hydrodynamic cell we use here in order to compare to molecular
dynamics. For mesoscopic hydrodynamic cells, the gain in time-step size afforded
by the low Mach formulation will be several orders of magnitude larger.

For mass ratio R = 1 and R = 2, the hydrodynamic calculations were initialized
using statistically identical configurations as would be obtained by coarse-graining
the initial particle configuration. This implies a sharp, step-like jump in concen-
tration at y = L/3 and y = 2L/3. Since our spatiotemporal discretization is not
strictly monotonicity-preserving, such sharp concentration gradients combined with
a small diffusion coefficient χ0 lead to a large cell Peclet number. This may in turn
lead to large deviations of concentration outside of the allowed interval 0≤ c ≤ 1
for larger mass ratios. Therefore, for R = 4, we smoothed the initial condition
slightly so that the sharp jump in concentration is spread over a few cells and also
employed a nine-point filter for the advection velocity (wF = 4; see Appendix B).
We verified that for R = 2 using filtering only affects the large wavenumbers and
does not appear to affect the small wavenumbers we study here, provided the bare
diffusion coefficient χ0 is adjusted based on the specific filtering width wF .

VI-C. Comparison between molecular-dynamics and fluctuating hydrodynam-
ics simulations. In order to compare the molecular-dynamics and the hydrodynamic
simulations, we calculated several statistical quantities:

(1) The averages of ρ1 along the directions perpendicular to the concentration
gradient,

ρ
(h)
1 (y)= L−1

∫ L

x=0
ρ1(x, y) dx, (50)

where the integral is discretized as a direct sum over the hydrodynamic cells. Note
that it is statistically better to use conserved quantities for such macroscopic averages
than to use nonconserved variables such as concentration [37].
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(2) The spectrum of the concentration averaged along the direction of the gradient
by computing the average

cv(x)= L−1
∫ L

y=0
c(x, y) dy

and then taking the discrete Fourier transform. Intuitively, cv is a measure of the
thickness of the red strip in Figure 3 and corresponds closely to what is measured
in light-scattering and shadowgraphy experiments [61; 12].

(3) The discrete Fourier spectrum of the y-coordinate of the “center of mass” of
concentration along the direction perpendicular to the gradient,

hc(x)= L−1
∫ L

y=0
y · c(x, y) dy.

Intuitively, hc is a measure of the height of the centerline of the red strip in Figure 3.

All quantities were sampled at certain prespecified time points in a number of
statistically independent simulations Ns and then means and standard deviations cal-
culated from the Ns data points. For systems of size Nc= 64 cells, we used Ns = 64
simulations, and for systems of size Nc = 128, we used Ns = 32 simulations. By far
the majority of the computational cost was in performing the HDMD simulations.

Average concentration profiles. Once χ0 and χeff were estimated based on simu-
lations of a constant-density (R = 1) fluid (see Section C.2), kinetic theory, i.e.,
Equations (C-1) and (C-2), can be used to estimate them for different density
ratios. In Figure 9 (page 99), we show ρ

(h)
1 (y) for mass ratio R = 2, showing

good agreement between HDMD and hydrodynamics especially when fluctuations
are accounted for. For R = 4, a direct comparison is difficult because the initial
condition was slightly different in the hydrodynamic simulations due to the need to
smooth the sharp concentration gradient for numerical reasons as explained earlier.
This difference strongly affects the shape of ρ(h)1 (y) at early times; however, it does
not significantly modify the roughness of the interface, which we study next.

Interface roughness. The most interesting contribution of fluctuations to the dif-
fusive mixing process is the appearance of giant concentration fluctuations in the
presence of large concentration gradients as evidenced in the roughness of the
interface between the two fluids during the early stages of the mixing in Figure 3.
In order to quantify this interface roughness, we used the one-dimensional power
spectra

Sc(kx)= 〈ĉv ĉ
?
v〉 and Sh(kx)= 〈ĥcĥ?c〉.

Note that here we do not correct the discrete wavenumber for the spatial discretiza-
tion artifacts and continue to use kx instead of k⊥.

The temporal evolution of the spectra Sc and Sh is shown in Figure 4 for mass
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ratio R = 1, and in Figure 5 for mass ratio R = 4, for both HDMD and low Mach
number fluctuating hydrodynamics (note that deterministic hydrodynamics would
give identically zero for any spectral quantity). We observe an excellent agreement
between the two, including the correct initial evolution of the interface fluctuations.
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Figure 4. Discrete spatial spectrum of the interface fluctuations for R = 1 and Nc = 128
(averaged over 32 simulations) at several points in time (drawn with different colors
as indicated in the legend) for fluctuating hydrodynamics (FH, squares with error bars)
and HDMD (circles, error bars comparable to those for squares). Note that the largest
wavenumber supported by the grid is kmax = π/1x ≈ 0.314. The larger wavenumbers are
however dominated by spatial truncation errors and the filter employed (if any), and we
do not show them here. Top: spectrum Sc(kx ) of the vertically averaged concentration.
Bottom: spectrum Sh(kx ) of the position of the vertical “center of mass” of concentration.
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Figure 5. Same as Figure 4 but for density ratio R = 4.

Note that, for a finite system, eventually complete mixing will take place and the
concentration fluctuations will have to revert to their equilibrium spectrum, which
is flat in Fourier space instead of the power-law behavior seen out of equilibrium.
In Figure 6, we show results for mixing up to a time t = 7.42 ·105 (this is 128 times
longer than those described above). These long simulations are only feasible for the
fluctuating hydrodynamics code and employ a somewhat larger time step1t=3.625.
The results clearly show that at late times the spectrum of the fluctuations reverts
to the equilibrium one; however, this takes some time even after the mixing is
essentially complete. Linearized incompressible fluctuating hydrodynamics [77;
73] predicts that at steady state the spectrum of nonequilibrium concentration
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Figure 6. Mixing to a time 128 times longer than previous results with results reported
at time intervals t = 7424 i2 for i = 1, . . . , 10. These long simulations are only feasible
for the fluctuating hydrodynamics code and employ a somewhat larger time step 1t =
3.625. Top: horizontally averaged ρ1 as shown for the shorter runs in the top panel of
Figure 9. Bottom: the spectrum of interface fluctuations Sc(kx ) as shown in the top
panels of Figures 4 and 5 for the shorter runs. The theoretical estimates for the spectrum
of equilibrium fluctuations, which is independent of wavenumber, is also shown. We
also indicate the theoretical prediction for the power law of the spectrum of steady-state
nonequilibrium fluctuations under an applied concentration gradient, Sc ∼ k−4.

fluctuations is a power law with exponent −4, Sc ∼ (∇c)2k−4. The dynamically
evolving spectra in the bottom panel of Figure 6 show approximately such power-law
behavior for intermediate times and wavenumbers.
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VI-D. Hard-sphere fluctuating hydrodynamics simulations. In order to illustrate
the appearance of giant fluctuations in three dimensions, we performed simulations
of mixing in a mixture of hard spheres with equal diameters, σ = 1, and mass ratio
R= 4. The packing density was chosen to be φ= 0.45, which corresponds to a very
dense gas but is still well below the freezing point φ f = 0.49. For the hydrodynamic
simulations, we used cubic cells of dimension 1x = 5, which corresponds to about
107 particles per hydrodynamic cell on average. In Figure 7, we show results from a
single simulation with a grid of size 128× 64× 128 cells, which would correspond
to about 108 particles. This makes molecular-dynamics simulations infeasible and
makes hydrodynamic calculations an invaluable tool in studying the mixing process
at these mesoscopic scales.

Figure 7. Diffusive mixing in three dimensions similar to that illustrated in Figure 3 for
two dimensions. Parameters are based on Enskog kinetic theory for a hard-sphere fluid at
packing fraction φ= 0.45, and there is no gravity. The mixing starts with the top half being
one species and the bottom half another species with density ratio R= 4, and concentration
is kept fixed at the top and bottom boundaries while the side boundaries are periodic. A
snapshot taken at time t = 5000 is shown. Top: the side panes show two-dimensional slices
for the concentration c. The approximated contour surface c = 0.2 is shown with color
based on surface height to illustrate the rough diffusive interface. Bottom left: similar to
top panel, but bottom pane shows vertically averaged concentration cv(x, z), illustrating
the giant concentration fluctuations. Bottom right: the Fourier spectrum Sc(kx , ky) of cv .
The color axis is logarithmic and clearly shows the appearance of large-scale (small-
wavenumber) fluctuations as also seen in Figure 5 in two dimensions.
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In the hydrodynamic simulations, we used bare transport coefficient values based
on Enskog kinetic theory for the hard-sphere fluid [69]. For the single-component
fluid with molecular mass m = 1, this theory gives η0≈ 2.32 and χ0≈ 0.053, which
corresponds to a bare Schmidt number Sc = ν0/χ0 ≈ 51. We used the same model
dependence of bare transport coefficients on concentration as for hard disks; see
Equations (C-1) and (C-2). The time step was set at 1t = 1 (corresponding to
viscous CFL number β = ν01t/1x2

≈ 0.1). In three dimensions, the cell Peclet
number is reduced with decreasing 1x , and we did not find it necessary to use any
filtering.

Instead of the fully periodic domain used in the two-dimensional hard-disk
simulations, here we employ the fixed-concentration boundary conditions (15) and
set c(y = 0; t) = 0 at the bottom and c(y = L y; t) = 1 at the top boundary. This
emulates the sort of “open” or “reservoir” boundaries [17] that mimic conditions
in experimental studies of diffusive mixing [12]. The initial condition is a fully
phase-separated mixture with c = 1 for y ≥ L/2 and c = 0 otherwise. As the
mixing process continues, the diffusive interface roughens and giant concentrations
appear as illustrated in Figure 7 and also observed experimentally in water-glycerol
mixtures in [12]. In three dimensions, however, the diffusive interface roughness
is much smaller than in two dimensions, being on the order of only 20 molecular
diameters for the snapshot shown in the figure. This illustrates the importance
of dimensionality when including thermal fluctuations. In particular, unlike in
deterministic fluid dynamics, in fluctuating hydrodynamics, one cannot simply
eliminate dimensions from consideration even in simple geometries.

Approximate theory based on the Boussinesq approximation and linearization of
the equations of fluctuating hydrodynamics has been developed in [77] and applied
in the analysis of experimental results on mixing in a water-glycerol mixture in
the presence of gravity [12]. The simulations reported here do not make the sort
of approximations necessary in analytical theories and can in principle be used to
study the mixing process quantitatively. However, it is important to emphasize that
in realistic liquids, such as a water-glycerol mixture, the Schmidt number is on the
order of 1000. This makes explicit time-stepping schemes that fully resolve the
dynamics of the velocity fluctuations infeasible. In future work, we will consider
semi-implicit type-stepping methods that relax the severe time-stepping restrictions
present in the explicit schemes considered here.

VII. Conclusions

The behavior of fluids is strongly affected by thermal fluctuations at scales from
the microscopic to the macroscopic. Fluctuating hydrodynamics is a powerful
coarse-grained model for fluid dynamics at mesoscopic and macroscopic scales at
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both a theoretical and a computational level. Theoretical calculations are rather
complicated in the presence of realistic spatial inhomogeneities and nontrivial
boundary conditions. In numerical simulations, those effects can readily be handled;
however, the large separation of time scales between different physical processes
poses a fundamental difficulty. Compressible fluctuating hydrodynamics bridges
the gap between molecular and hydrodynamic scales. At spatial scales not much
larger than molecular, sound and momentum and heat diffusion occur at comparable
time scales in both gases and liquids. At mesoscopic and larger length scales, fast
pressure fluctuations due to thermally actuated sound waves are much faster than
diffusive processes. It is therefore necessary to eliminate sound modes from the
compressible equations. In the deterministic context, this is accomplished using
low Mach number asymptotic expansion.

For homogeneous simple fluids or mixtures of dynamically identical fluids, the
zeroth-order low Mach equations are the well-known incompressible Navier–Stokes
equations, in which pressure is a Lagrange multiplier enforcing a divergence-free
velocity field. In mixtures of dissimilar fluids, local changes in composition and
temperature cause local expansion and contraction of the fluid and thus a nonzero
velocity divergence. In this paper, we proposed low Mach number fluctuating
equations for isothermal binary mixtures of incompressible fluids with different
density or a mixture of low-density gases with different molecular masses. These
equations are a straightforward generalization of the widely used incompressible
fluctuating Navier–Stokes equations. In the low Mach number equations, the incom-
pressibility constraint ∇ · v = 0 is replaced by ∇ · v =−β(Dc/Dt), which ensures
that compositional changes are accompanied by density changes in agreement
with the fluid equation of state (EOS) at constant pressure and temperature. This
seemingly simple generalization poses many nontrivial analytical and numerical
challenges, some of which we addressed in this paper.

At the analytical level, the low Mach number fluctuating equations are different
from the incompressible equations because the velocity divergence is directly
coupled to the time derivative of the concentration fluctuations. This means that at
thermodynamic equilibrium the velocity is not only white in space, a well-known
difficulty with the standard equations of fluctuating hydrodynamics, but is also white
in time, adding a novel type of difficulty that has not heretofore been recognized. The
unphysically fast fluctuations in velocity are caused by the unphysical assumption
of infinite separation of time scales between the sound and the diffusive modes. This
unphysical assumption also underlies the incompressible fluctuating Navier–Stokes
equations; however, in the incompressible limit β→ 0, the problem is not apparent
because the component of velocity that is white in time disappears. Here we analyzed
the low Mach equations at the linearized level and showed that they reproduce the
slow diffusive fluctuations in the full compressible equations while eliminating the



LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS 89

fast pressure fluctuations. At the formal level, we suggest that a generalized Hodge
decomposition can be used to separate the vortical (solenoidal) modes of velocity
as the independently fluctuating variable, coupled with a gauge formulation used
to treat the divergence constraint. Such nonlinear analysis is deferred for future
research, and here we relied on the fact that the temporal discretization regularizes
the short-time dynamics at time scales faster than the time-step size 1t .

At the numerical level, the low Mach number equations pose several distinct
challenges. The first challenge is to construct conservative spatial discretizations in
which density is advected in a locally conservative manner while still maintaining
the equation-of-state constraint relating the local densities and composition. We
accomplish this here by using a specially chosen model EOS that is linear yet
still rather versatile in practice, and by advecting densities using a velocity that
obeys a discrete divergence constraint. We note that, for this simplified case, the
system can be modeled using only the concentration to describe the thermodynamic
state. However, for more general low Mach number models, maintaining a full
thermodynamic representation of the state independent of the constraint leads
to more robust numerics. As in incompressible hydrodynamics, enforcing this
constraint requires a Poisson pressure solver that dominates the computational cost
of the algorithm. A second challenge is to construct temporal integrators that are
at least second-order in time. We accomplish this here by formally introducing an
unconstrained gauge formulation of the equations while at the same time taking
advantage of the gauge degree of freedom to avoid ever explicitly dealing with the
gauge variable. The present temporal discretizations are purely explicit and are
similar in spirit to an explicit projection method. A third and remaining challenge
is to design efficient temporal integrators that handle momentum diffusion, the
second-fastest physical process, semi-implicitly. This poses well-known challenges
even in the incompressible setting. These challenges were bypassed in recently
developed temporal integrators for the incompressible fluctuating Navier–Stokes
equations [73] by avoiding the splitting inherent in projection methods. Extending
this type of Stokes-system approach to the low Mach equations will be the subject
of future research.

One of the principal motivations for developing the low Mach number equations
and our numerical implementation was to model recent experiments on the devel-
opment of giant concentration fluctuations in the presence of sharp concentration
gradients. We first studied giant fluctuations in a time-independent or static setting
as observed experimentally by inducing a constant concentration gradient via a
constant applied temperature gradient. Our simulations show that, under conditions
employed in experimental studies of the diffusive mixing of water and glycerol, it
is reasonable to employ the Boussinesq approximation. The results also indicate
that the constant-transport-coefficient approximation that is commonly used in
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theoretical calculations is appropriate if the diffusion coefficient follows a Stokes–
Einstein relation, but should be used with caution in general.

We continued our study of giant concentration fluctuations by simulating the
temporal evolution of a rough diffusive interface during the diffusive mixing of hard-
disk fluids. Comparison between computationally intensive event-driven molecular-
dynamics simulations and our hydrodynamic calculations demonstrated that the low
Mach number equations of fluctuating hydrodynamics provide an accurate coarse-
grained model of fluid mixing. Special care must be exercised, however, in choosing
the bare transport coefficients, especially the concentration-diffusion coefficient, as
these are renormalized by the fluctuations and can be strongly grid-dependent [23;
24; 26]. Some questions remain about how to define and measure the bare transport
coefficients from microscopic simulations, but we show that simply comparing
particle and hydrodynamic calculations at large scales is a robust technique.

The strong coupling between velocity fluctuations and diffusive transport means
that deterministic models have limited utility at mesoscopic scales and even macro-
scopic scales in two dimensions. This implies that standard fluorescent techniques
for measuring diffusion coefficients, such as fluorescence correlation spectroscopy
(FCS) and fluorescence recovery after photobleaching (FRAP) [8], may not in
fact be measuring material constants but rather geometry-dependent values [26].
Fluctuating hydrodynamic simulations of typical experimental simulations, however,
are still out of reach due to the very large separation of time scales between mass
and momentum diffusion. Surpassing this limitation requires the development of a
semi-implicit temporal discretization that is stable for large time steps. Furthermore,
it is also necessary to develop novel mathematical models and algorithms that are
not only stable but also accurate in the presence of such large separation of scales.
This is a nontrivial challenge if thermal fluctuations are to be included consistently
and will be the subject of future research.

Appendix A: Linearized analysis

As discussed in more depth in [73], there are fundamental mathematical difficulties
with the interpretation of the nonlinear equations of fluctuating hydrodynamics due
to the roughness of the fluctuating fields. It should be remembered, however, that
these equations are coarse-grained models with the coarse-graining length scale set
by the size of the hydrodynamic cells used in discretizing the equations [34]. The
spatial discretization removes the small length scales from the stochastic forcing
and regularizes the equations. It is important to point out, however, that imposing
such a small-scale regularization (smoothing) of the stochastic forcing also requires
a suitable renormalization of the transport coefficients [4; 23; 26] as we discuss in
more detail in Section VI.
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As long as there are sufficiently many molecules per hydrodynamic cell, the
fluctuations in the spatially discrete hydrodynamic variables will be small and
the behavior of the nonlinear equations will closely follow that of the linearized
equations of fluctuating hydrodynamics [73], which can be given a precise meaning
[13]. It is therefore crucial to understand the linearized equations from a theoretical
perspective and to analyze the behavior of the numerical schemes in the linearized
setting [29].

A1. Compressible equations. Some of the most important quantities predicted by
the fluctuating hydrodynamics equations are the equilibrium structure factors (static
covariances) of the fluctuating fields. These can be obtained by linearizing the
compressible equations (1) around a uniform reference state ρ=ρ0+δρ, c= c0+δc,
v = δv, P = P0+ δP , where

δP = c2
T [(δρ)−βρ(δc)],

and then applying a spatial Fourier transform [61; 29]. Owing to fluctuation-
dissipation balance, the static structure factors are independent of the wavevector k
at thermodynamic equilibrium,

Sρ,ρ(k)=
〈
(δ̂ρ)(δ̂ρ)?

〉
=
ρ0kB T0

c2
T
+β2ρ0kB T0

µc
,

Sv,v(k)=
〈
(δ̂v)(δ̂v)?

〉
= ρ−1

0 kB T0 I,

Sc,c(k)=
〈
(δ̂c)(δ̂c)?

〉
=

kB T0

ρ0µc
. (A-1)

Note that density fluctuations do not vanish even in the incompressible limit cT→∞

unless β = 0. While fluctuations in ρ1 and ρ2 are uncorrelated, the fluctuations in
concentration and density are correlated even at equilibrium,

Sc,ρ =
〈
(δ̂ρ)(δ̂c)?

〉
= β

kB T0

µc
= ρ0βSc,c.

We will see below that the low Mach equations correctly reproduce the static
covariances of density and concentration in the limit cT →∞.

The dynamics of the equilibrium fluctuations can also be studied by applying
a Fourier–Laplace transform in time in order to obtain the dynamic structure
factors (equilibrium correlation functions) as a function of wavenumber k and
wave frequency ω [61; 29]. It is well-known that the dynamic spectrum of density
fluctuations Sρ,ρ(k, ω) exhibits three peaks for a given k: one central Rayleigh peak
at small frequencies (slow concentration fluctuations) and two symmetric Brillouin
peaks centered around ω ≈±cT k. As the fluid becomes less compressible (i.e., the
speed of sound increases), there is an increasing separation of time scales between



92 A. DONEV, A. NONAKA, Y. SUN, T. G. FAI, A. L. GARCIA AND J. B. BELL

the side and central spectral peaks. As we will see below, the low Mach equations
reproduce the central peaks in the dynamic structure factors only, eliminating the
side peaks and the associated stiff dynamics.

A2. Low Mach equations. We now examine the spatiotemporal correlations of
the steady-state fluctuations in the low Mach number equations (8), (9), (11),
and (12). In order to model the nonequilibrium setting in which giant concentration
fluctuations are observed, we include a constant background concentration gradient
in the equations. Note that a density gradient will accompany a concentration
gradient, and this can introduce some additional terms in F depending on how ρχ

depends on concentration. For simplicity, we assume ρχ is a constant so that the
diffusive term ∇ · F in (9) is simply ρχ∇

2c. We also assume the viscosity η is
spatially constant to get the simplified coupled velocity-concentration equations

Dtv =− ρ
−1

∇π + ν∇2v+ ρ−1(∇ ·6)+ g,

Dt c =χ∇
2c+ ρ−1(∇ ·9),

∇ · v =−βDt c, (A-2)

where ν = η/ρ and ρ = ρ(c) is given by (13).
We linearize the equations (A-2) around a steady state, c= c+δc, v=v+δv= δv,

and π =π+δπ , where the reference state is in mechanical equilibrium, ρ −1∇π = g.
We denote the background concentration gradient with h =∇c. We additionally
assume that the reference state varies very weakly on length scales of order of the
wavelength and, in particular, that ρ and c are essentially constant. This allows us
to drop the bars from the notation and employ a quasiperiodic or weak-gradient
approximation [77; 24]. In the linear approximation, the EOS constraint relates
density and concentration fluctuations, δρ = ρβ(δc). The term v ·∇v is second-
order in the fluctuations and drops out, but the advective term v ·∇c leads to a
term (δv) ·h in the concentration equation. The forcing term due to gravity becomes
ρ−1(δρ)g = β(δc)g. After a spatial Fourier transform, the linearized form of
(A-2) becomes a collection of stochastic differential equations, one system of linear
additive-noise equations per wavenumber,

∂t(δ̂v)=−iρ−1k(δ̂π)− νk2(δ̂v)+ iρ−1k · 6̂+β g(δ̂c), (A-3)

∂t(δ̂c)=−h · (δ̂v)−χk2(δ̂c)+ iρ−1(k · 9̂), (A-4)

k̂ · (δ̂v)=−β
[
iχk(δ̂c)+ ρ−1(k̂ · 9̂)

]
. (A-5)

Replacing the right side of (A-5) with zero leads to the incompressible approximation
used in [77], corresponding to the Boussinesq approximation of taking the limit
β→ 0 while keeping the product βg constant.
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Equilibrium fluctuations. Let us first compare the dynamics of the equilibrium
fluctuations (h= 0) in the low Mach equations with those in the complete compress-
ible equations. For simplicity of notation, we will continue to use the hat symbol to
denote the space-time Fourier transform.

In the wavenumber-frequency (k, ω) Fourier domain, the concentration fluctua-
tions in the absence of a gradient are obtained from (A-4),

δ̂c(k, ω)=
iρ−1k

iω+χk2 (k̂ · 9̂),

which is the same as the compressible equations. The density fluctuations follow
the concentration fluctuations, δ̂ρ = ρβδ̂c, and the dynamic structure factor for
density shows the same central Rayleigh peak as obtained from the isothermal
compressible equations [61],

Sρ,ρ(k, ω)=
β2k2

ω2+χ2k4 〈9̂9̂
?
〉 = β2(ρµ−1

c kB T )
2χk2

ω2+χ2k4 ,

where we used (3) for the covariance of 9̂. This shows that the low Mach num-
ber equations correctly reproduce the slow fluctuations (small ω) in density and
concentration while eliminating the side Brillouin peaks associated with the fast
isentropic pressure fluctuations.

The fluctuations in velocity, however, are different between the compressible and
low Mach number equations. Let us first examine the transverse (solenoidal) compo-
nent of velocity δ̂vs = P̂ δ̂v, where P is the constant-density orthogonal projection
onto the space of divergence-free velocity fields (P̂ = I − k−2(kk?) in Fourier
space). Applying the projection operator to the velocity equation (A-3) shows that
the fluctuations of the solenoidal modes are the same as in the incompressible
approximation,

∂t(δ̂vs)=−νk2(δ̂vs)+ iρ−1k · P̂6̂+βP̂ g(δ̂c).

The fluctuations of the compressive velocity component δ̂vl = k̂ · (δ̂v), on the other
hand, are driven by the stochastic mass flux 9̂ as seen from (A-5) at thermodynamic
equilibrium,

δ̂vl =
iωβρ−1

iω+χk2 (k̂ · 9̂).

The dynamic structure factor (space-time Fourier spectrum) of the longitudinal
component

S(l)v,v =
〈
(δ̂vl)(δ̂vl)

?
〉
∼

β2ω2

(ω2+χ2k4)
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does not decay to zero as ω→∞. This indicates that the fluctuations of velocity are
not only white in space but also white in time. In the incompressible approximation,
β→ 0 so that the longitudinal velocity fluctuations vanish and the static spectrum
of the velocity fluctuations is equal to the projection operator, Sv,v = P̂ [73].
In the compressible equations, the dynamic structure factor for the longitudinal
component of velocity decays to zero as ω→∞ because it has two sound (Brillouin)
peaks centered around ω ≈ cT k in addition to the central diffusive (Rayleigh) peak.
The low Mach number equations reproduce the central peak (slow fluctuations)
correctly, replacing the side peaks with a flat spectrum for large ω. The origin of
this unphysical behavior is the unjustified assumption of infinite separation of time
scales between the propagation of sound and the diffusion of mass, momentum,
and energy. In reality, the same molecular motion underlies all of these processes
and the incompressible or the low Mach number equations cannot be expected to
reproduce the correct physical behavior at very short time scales (ω & cT k).

Nonequilibrium fluctuations. If we neglect the term involving 9̂ in (A-5) and
eliminate the Lagrange multiplier (nonthermodynamic pressure) π using (A-5), we
obtain the linearized velocity equation in Fourier space

∂t(δ̂v)=−νk2(δ̂v)+ iρ−1k · P̂6̂+β(δ̂c)P̂ g

− iβχ [h · (δ̂v)]k+ iβχ(ν−χ)k2(δ̂c)k. (A-6)

It is straightforward to obtain the steady-state covariances (static structure factors)
in the presence of a concentration gradient from the linearized system of velocity-
concentration equations (A-4) and (A-6) [29]. The procedure amounts to solving a
linear system for three covariances (velocity-velocity, concentration-concentration,
and velocity-concentration). These types of calculations are particularly well-suited
for modern computer algebra systems like Maple and can be carried out for arbitrary
wavenumber and background concentration gradient. We omit the full solution for
brevity.

Experiments measure the steady-state spectrum of concentration fluctuations
averaged along the gradient [12; 75], and we will therefore focus on wavenumbers
perpendicular to the gradient, k · h = 0. A straightforward calculation shows that
the concentration fluctuations are enhanced as the square of the applied gradient,

Sc,c(k)=
〈
(δ̂c)(δ̂c)?

〉
=

kB T0

ρ0µc
+

νkB T
ρ(ν+χ)

[
(νχk4

⊥
+ h‖gβ)+β2(χ3ν/(ν+χ)2)k2

⊥
h2
⊥

] h2
‖
, (A-7)

where ⊥ and ‖ denote the perpendicular and parallel components relative to gravity,
respectively. The term in the denominator involving h⊥ comes from the low Mach
number constraint (11) and is usually negligible since the concentration gradient is
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parallel to gravity or χ/ν�1. Without this term, the result (A-7) is the same result as
obtained in [77] and shows that fluctuations at wavenumbers below k4

⊥
=h‖gβ/(νχ)

are suppressed by gravity as we study numerically in Section V.

Appendix B: Spatial filtering

In our spatial discretization, we use centered differencing for the advective terms
because this leads to a skew-adjoint discretization of advection [54] that main-
tains discrete fluctuation-dissipation balance in the spatially discretized stochastic
equations [29; 18]. It is well-known that centered discretizations of advection do
not preserve monotonicity properties of the underlying PDEs in the deterministic
setting unlike one-sided (upwind) discretizations. Therefore, our spatiotemporal
discretization can lead to unphysical oscillations of the concentration and density
in cases where the cell Peclet number Pe=1x‖v‖/χ is large.

In the deterministic setting, Pe can always be decreased by reducing 1x and
resolving the fine-scale dissipative features of the flow. However, in the stochastic
setting, the magnitude of the fluctuating velocities at equilibrium is

〈(δv)2〉 ∼
kB T
ρ1V

,

where 1V is the volume of the hydrodynamic cell. Therefore, in two dimensions,
the characteristic advection velocity magnitude is ‖v‖ ∼1x−1. This means that
in two dimensions Pe is independent of the grid size and reducing 1x cannot
fix problems that may arise due to a large cell Peclet number. For some of the
simulations reported in Section VI, we have found it necessary to implement a
spatial filtering procedure to reduce the magnitude of the fluctuating velocities
while preserving their spectrum as well as possible at small wavenumbers.

The filtering procedure consists of applying a local averaging operation to the
spatially discretized random fields W and W̃ independently along each Cartesian
direction. This local averaging smooths the random forcing and thus reduces the
spectrum of the random forcing at larger wavenumbers. The specific filters we use
are taken from [46]. For stencil width wF = 2, filtering a discrete field W in one
dimension takes the form

Wi ←
5
8 Wi +

1
4(Wi−1+Wi+1)−

1
16(Wi−2+Wi+2).

In Fourier space, for discrete wavenumber1k=k1x , this local averaging multiplies
the spectrum of W by F(1k)= 1+ O(1k4) and therefore maintains the second-
order accuracy of the spatial discretization. At the same time, the filtering reduces
the variance of the fluctuating fields by about a factor of two in one dimension (a
larger factor in two dimensions). The spectrum of the fluctuations can be preserved
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even more accurately if a stencil of width wF = 4 is used for the local averaging,

Wi ←
93

128 Wi +
7
32(Wi−1+Wi+1)−

7
64(Wi−2+Wi+2)

+
1

32(Wi−3+Wi+3)−
1

256(Wi−4+Wi+4),

giving a sixth-order-accurate filter F(1k) = 1+ O(1k8) and a reduction of the
variance by about a third in one dimension. In two and three dimensions, the filtering
operators are simple tensor products of one-dimensional filtering operators. Note
that we only use these filters with periodic boundary conditions. One can, of course,
also use Fourier-transform techniques to filter out high-frequency components from
the stochastic mass and momentum fluxes.

Appendix C: Extracting transport properties from molecular dynamics

The hydrodynamic simulations described in Section VI require as input transport
coefficients, notably, the shear viscosity η and diffusion coefficient χ , which need
to be extracted from the underlying microscopic (molecular) dynamics. This is
a very delicate and important step that has not, to our knowledge, been carefully
performed in previous studies. In this appendix, we give details about the procedure
we developed for this purpose.

C1. Viscosity ν. As discussed in more detail in [24; 26], the transport coefficients in
fluctuating hydrodynamics are not universal material constants but rather depend on
the spatial scale (degree of coarse-graining) under question. We emphasize that this
scale-dependent renormalization is not a molecular scale effect but rather an effect
arising out of hydrodynamic fluctuations and persists even at the hydrodynamic
scales we are examining here. The best way to define and measure transport
coefficients is by examining the dynamics of equilibrium fluctuations, specifically,
by examining the dynamic structure factors of the hydrodynamic fields [61], i.e.,
the equilibrium averages of the spatiotemporal Fourier spectra of the fluctuating
hydrodynamic fields. For a hydrodynamic variable ξ that is transported by a purely
diffusive process, the spectrum of the fluctuations at a given wavenumber k and
wave frequency ω is expected to be a Lorentzian peak of the form

Sx(k, ω)= 〈x̂(k, ω) x̂?(k, ω)〉 ∼ [ω2
+ ζ 2k4

]
−1,

where in general the diffusion constant ζ(k) depends on the wavenumber k (wave-
length λ= 2π/k). We can therefore estimate the diffusion coefficient χ by fitting a
Lorentzian peak to Sc(k, ω) for different k’s (i.e., ξ ≡ c). Similarly, we can estimate
the kinematic viscosity ν = η/ρ by fitting a Lorentzian curve to dynamic structure
factors for the scaled vorticity, ξ ≡ k−1(∇× v)z .

We performed long equilibrium molecular-dynamics simulations of systems
corresponding to a grid of Nc = 32 hydrodynamic cells and then calculated the
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Figure 8. Estimates of the momentum diffusion coefficient (viscosity) ν = η/ρ obtained
from the width of the central peak in the dynamic structure factor of vorticity. A collection
of 24 distinct discrete wavenumbers k were used and the width of the peaks estimated
using a nonlinear least-squares Lorentzian fit.

discrete spatiotemporal Fourier spectrum of the hydrodynamic fields at a collection
of discrete wavenumbers k. Since these simulations are at equilibrium, the systems
are well-mixed; specifically, the initial configurations were generated by randomly
assigning a species label to each particle. We then performed a nonlinear least-
squares Lorentzian fit in ω for each k and estimated the width of the Lorentzian
peak. The results for the dynamics of the equilibrium vorticity fluctuations are
shown in Figure 8. We see that kinematic viscosity is relatively constant for a broad
range of wavelengths, consistent with fluctuating hydrodynamics calculations [51]
and previous molecular-dynamics simulations [38]. For the pure component-one
fluid, c = 1, with density ρ ≈ 0.764, the figure shows ν ≈ 3.3. We therefore used
η1 ≈ 0.764 · 3.3≈ 2.5 in all of the hydrodynamic runs reported in Section VI. This
is about 20% higher than the prediction of the simple Enskog kinetic theory [42],
η≈ 2.06, and is consistent with the estimates reported in [38]. Because the diffusion
coefficient is small at the densities we study, more specifically because the Schmidt
number Sc = ν/χ is larger than 10, we were unable to obtain reliable estimates
for χ(k) from the dynamic structure factor for concentration.

Simple dimensional analysis or kinetic theory shows that η ∼
√

m. Since the
disks of the two species have equal diameters, the viscosity of the pure second fluid
component is

η2 = η1

√
m2

m1
= η1
√

R. (C-1)
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There is no simple theory that accurately predicts the concentration dependence
of the viscosity of a hard-disk mixture at higher densities [69]. To our knowledge,
there is no published Enskog kinetic-theory calculations for hard-disk mixtures in
two dimensions even for the simpler case of equal diameters. As an approximation
to the true dependence, we employed a simple linear interpolation of the kinematic
viscosity ν(c)= η(c)/ρ as a function of the mass concentration c between the two
known values ν1 = ν(c = 1) ≈ 3.3 and ν2 = ν(c = 0) = ν1/

√
R. The numerical

results for mixtures with mass ratios R = 2 and R = 4 in Figure 8 are consistent
with this approximation to within the large error bars. For example, for c = 1/2
and R = 4, the interpolation gives ν = 3 · 3.3/4 ≈ 2.5, which is in reasonable
agreement with the numerical estimate.

C2. Diffusion coefficient χ . For the interspecies diffusion coefficient χ , which
we emphasize is distinct from the self-diffusion coefficients for particles of either
species, Enskog kinetic theory predicts no concentration dependence and a simple
scaling with the mass ratio [69],

χ(R)= χ(R = 1)

√
1+ R

2R
. (C-2)

This particular dependence on mass ratio R comes from the fact that the aver-
age relative speed between particles of different species is ∼

√
kB T/m R , where

m R = 2m1m2/(m1 + m2) is the reduced molecular mass. We have assumed in
our hydrodynamic calculations that the diffusion coefficient is independent of
concentration and follows (C-2). The only input to the hydrodynamic calculation is
the bare self-diffusion coefficient for the pure-component fluid, χ0(R=1). Diffusion
is strongly renormalized by thermal fluctuations, and fluctuating hydrodynamics
theory and simulations predict a strong dependence of the diffusion coefficient χ
on the wavelength [24], consistent with molecular-dynamics results [38].

In order to estimate the appropriate value of the bare diffusion coefficient χ0,
we numerically solved an inverse problem. Using simple bisection, we looked
for the value of χ0 that leads to best agreement for the average or “macroscopic”
diffusion (mixing) between the particle and continuum simulations. Specifically,
we calculated the density of the first species ρ(h)1 (y) along the y-direction by
averaging ρ1 in each horizontal row of hydrodynamic cells; see (50). The results
for ρ(h)1 for mass ratios R = 1 and R = 4 are shown in Figure 9 at different points
in time for systems of size Nc = 64 cells. The figures show the expected sort of
diffusive-mixing profile, which is exactly what would be used in experiments to
measure diffusion coefficients using fluorescent techniques such as fluorescence
recovery after photobleaching (FRAP) [8]. This macroscopic measurement smooths
over the fluctuations (roughness) of the diffusive interface and only measures an
effective diffusion coefficient at the scale of the domain length L . If deterministic
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Figure 9. Top: diffusive evolution of the horizontally averaged density ρ(h)1 (y) for a
system of size Nc = 64 hydrodynamic cells and density ratio R = 1 as obtained from
HDMD simulations (circles, averaged over 64 runs), deterministic hydrodynamics with
χeff= 0.2 (dashed lines), and fluctuating hydrodynamics with χ0= 0.09 (squares, averaged
over 64 runs). Error bars are comparable to the symbol size and not shown for clarity.
Bottom: same as the top panel except the density ratio is R=2 and the transport coefficients
are adjusted according to (C-1)–(C-2).

hydrodynamics is employed, ρ(h)1 (y) is the solution of a one-dimensional system of
equations obtained by simply deleting the stochastic forcing and the x-dependence
in the low Mach equations. Instead of solving this system analytically, we employed
our spatiotemporal discretization with fluctuations turned off and with an effective
diffusion coefficient χ = χeff that accounts for the renormalization of the diffusion
coefficient by the thermal fluctuations.
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By matching the profile ρ(h)1 (y) between the HDMD and the fluctuating and
deterministic hydrodynamic simulations at mass ratio R=1 and system size Nc=64
cells, we obtained estimates for the bare χ0 and the renormalized χeff coefficients
(see Figure 9 on the previous page). The best estimate for the bare diffusion
coefficient based on this matching in the absence of filtering is χ0 = 0.09± 0.01.
This compares reasonably well to the prediction of Enskog theory [42] of χ ≈ 0.08
as well as to the measurement of the self-diffusion coefficient for a periodic system
with 169 disks reported in [38], χ ≈ 0.14 (recall that a single hydrodynamic cell
in our case contains about 76 particles). When a five-point filter is employed,
the estimate is χ0(wF = 2) ≈ 0.12, and when a nine-point filter is employed,
χ0(wF = 4) ≈ 0.11. The estimated renormalized diffusion coefficient is much
larger, χeff ≈ 0.20± 0.01, consistent with a rough estimate based on the simple
theory presented in [24],

χeff ≈ χ0+
kB T

4πρ(ν+χ0)
ln
(Nc

3

)
≈

{
0.18 for Nc = 64,
0.20 for Nc = 128.

To within statistical accuracy, we were not able to detect the increase in the estimated
diffusion coefficients when using the larger systems of size Nc= 128 cells; however,
for Nc = 32, it was clear that χeff is reduced.

It is important to emphasize that χeff is not a material constant but rather depends
on the details of the problem in question, in particular, the system geometry and
size and boundary conditions [26]. By contrast, χ0 is a constant for a given spatial
discretization, and one can use the same number for different scenarios so long
as the hydrodynamic cell size and the filter are kept fixed. Unlike deterministic
hydrodynamics, which presents an incomplete picture of diffusion, fluctuating
hydrodynamics correctly accounts for the important contribution of the thermal
velocity fluctuations and the roughness of the diffusive interface seen in Figure 3.

Acknowledgments

We would like to thank Boyce Griffith and Mingchao Cai for helpful comments.
J. Bell, A. Nonaka, and A. Garcia were supported by the DOE Applied Mathematics
Program of the DOE Office of Advanced Scientific Computing Research under
the U.S. Department of Energy under contract number DE-AC02-05CH11231.
A. Donev was supported in part by the National Science Foundation under grant
DMS-1115341 and the Office of Science of the U.S. Department of Energy through
an Early Career Award (number DE-SC0008271). T. Fai wishes to acknowledge
the support of the DOE Computational Science Graduate Fellowship under grant
number DE-FG02-97ER25308. Y. Sun was supported by the National Science
Foundation under award OCI 1047734.



LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS 101

References

[1] A. S. Almgren, A. J. Aspden, J. B. Bell, and M. L. Minion, On the use of higher-order projection
methods for incompressible turbulent flow, SIAM J. Sci. Comput. 35 (2013), no. 1, B25–B42.
MR 3033070 Zbl 1264.76032

[2] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, A conservative adaptive
projection method for the variable density incompressible Navier–Stokes equations, J. Comput.
Phys. 142 (1998), no. 1, 1–46. MR 99k:76096 Zbl 0933.76055

[3] P. J. Atzberger, Stochastic Eulerian Lagrangian methods for fluid-structure interactions with
thermal fluctuations, J. Comput. Phys. 230 (2011), no. 8, 2821–2837. MR 2012c:74040
Zbl 05909504

[4] D. Bedeaux and P. Mazur, Renormalization of the diffusion coefficient in a fluctuating fluid, I,
Physica 73 (1974), no. 3, 431–458. MR 53 #10059

[5] J. B. Bell, P. Colella, and H. M. Glaz, A second-order projection method for the incompress-
ible Navier–Stokes equations, J. Comput. Phys. 85 (1989), no. 2, 257–283. MR 90i:76002
Zbl 0681.76030

[6] J. B. Bell, A. L. Garcia, and S. A. Williams, Computational fluctuating fluid dynamics, ESAIM
Math. Model. Numer. Anal. 44 (2010), no. 5, 1085–1105. MR 2011h:76030 Zbl 05798944

[7] L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev. 39 (2010),
no. 3, 1073–1095.

[8] K. Braeckmans, L. Peeters, N. N. Sanders, S. C. De Smedt, and J. Demeester, Three-dimensional
fluorescence recovery after photobleaching with the confocal scanning laser microscope, Bio-
phys. J. 85 (2003), no. 4, 2240–2252.

[9] D. Brogioli, Giant fluctuations in diffusion in freely-suspended liquid films, preprint, 2011.
arXiv 1103.4763v2

[10] M. Cai, A. J. Nonaka, J. B. Bell, B. E. Griffith, and A. Donev, Efficient variable-coefficient
finite-volume Stokes solvers, preprint, 2013. arXiv 1308.4605v1

[11] F. Croccolo, H. Bataller, and F. Scheffold, A light scattering study of non equilibrium fluctuations
in liquid mixtures to measure the soret and mass diffusion coefficient, J. Chem. Phys. 137 (2012),
#234202.

[12] F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, Nondiffusive decay of
gradient-driven fluctuations in a free-diffusion process, Phys. Rev. E 76 (2007), no. 4, 041112.

[13] G. Da Prato, Kolmogorov equations for stochastic PDEs, Birkhäuser, 2004. MR 2005m:60002
Zbl 1066.60061

[14] B. Davidovitch, E. Moro, and H. A. Stone, Spreading of viscous fluid drops on a solid substrate
assisted by thermal fluctuations, Phys. Rev. Lett. 95 (2005), no. 24, 244505.

[15] M. S. Day and J. B. Bell, Numerical simulation of laminar reacting flows with complex chemistry,
Combust. Theory Model. 4 (2000), no. 4, 535–556. Zbl 0970.76065

[16] R. Delgado-Buscalioni, E. Chacon, and P. Tarazona, Hydrodynamics of nanoscopic capillary
waves, Phys. Rev. Lett. 101 (2008), no. 10, 106102.

[17] R. Delgado-Buscalioni, Tools for multiscale simulation of liquids using open molecular dynam-
ics, Numerical analysis of multiscale computations (B. Engquist, O. Runborg, and Y.-H. R.
Tsai, eds.), Lect. Notes Comput. Sci. Eng., no. 82, Springer, Heidelberg, 2012, pp. 145–166.
MR 3075795 Zbl 1243.82005

[18] S. Delong, B. E. Griffith, E. Vanden-Eijnden, and A. Donev, Temporal integrators for fluctuating
hydrodynamics, Phys. Rev. E 87 (2013), no. 3, 033302.

http://dx.doi.org/10.1137/110829386
http://dx.doi.org/10.1137/110829386
http://msp.org/idx/mr/3033070
http://msp.org/idx/zbl/1264.76032
http://dx.doi.org/10.1006/jcph.1998.5890
http://dx.doi.org/10.1006/jcph.1998.5890
http://msp.org/idx/mr/99k:76096
http://msp.org/idx/zbl/0933.76055
http://dx.doi.org/10.1016/j.jcp.2010.12.028
http://dx.doi.org/10.1016/j.jcp.2010.12.028
http://msp.org/idx/mr/2012c:74040
http://msp.org/idx/zbl/05909504
http://dx.doi.org/10.1016/0031-8914(74)90104-9
http://msp.org/idx/mr/53:10059
http://dx.doi.org/10.1016/0021-9991(89)90151-4
http://dx.doi.org/10.1016/0021-9991(89)90151-4
http://msp.org/idx/mr/90i:76002
http://msp.org/idx/zbl/0681.76030
http://dx.doi.org/10.1051/m2an/2010053
http://msp.org/idx/mr/2011h:76030
http://msp.org/idx/zbl/05798944
http://dx.doi.org/10.1039/b909366b
http://dx.doi.org/10.1016/S0006-3495(03)74649-9
http://dx.doi.org/10.1016/S0006-3495(03)74649-9
http://arxiv.org/abs/1103.4763v2
http://arxiv.org/abs/1308.4605v1
http://dx.doi.org/10.1103/PhysRevE.76.041112
http://dx.doi.org/10.1103/PhysRevE.76.041112
http://dx.doi.org/10.1007/978-3-0348-7909-5
http://msp.org/idx/mr/2005m:60002
http://msp.org/idx/zbl/1066.60061
http://dx.doi.org/10.1103/PhysRevLett.95.244505
http://dx.doi.org/10.1103/PhysRevLett.95.244505
http://dx.doi.org/10.1088/1364-7830/4/4/309
http://msp.org/idx/zbl/0970.76065
http://dx.doi.org/10.1103/PhysRevLett.101.106102
http://dx.doi.org/10.1103/PhysRevLett.101.106102
http://dx.doi.org/10.1007/978-3-642-21943-6_7
http://dx.doi.org/10.1007/978-3-642-21943-6_7
http://msp.org/idx/mr/3075795
http://msp.org/idx/zbl/1243.82005
http://dx.doi.org/10.1103/PhysRevE.87.033302
http://dx.doi.org/10.1103/PhysRevE.87.033302


102 A. DONEV, A. NONAKA, Y. SUN, T. G. FAI, A. L. GARCIA AND J. B. BELL

[19] G. D’Errico, O. Ortona, F. Capuano, and V. Vitagliano, Diffusion coefficients for the binary
system glycerol + water at 25◦c: a velocity correlation study, J. Chem. Engin. Data 49 (2004),
no. 6, 1665–1670.

[20] F. Detcheverry and L. Bocquet, Thermal fluctuations in nanofluidic transport, Phys. Rev. Lett.
109 (2012), 024501.

[21] F. Detcheverry and L. Bocquet, Thermal fluctuations of hydrodynamic flows in nanochannels,
Phys. Rev. E 88 (2013), no. 1, 012106.

[22] A. Donev, B. J. Alder, and A. L. Garcia, Stochastic hard-sphere dynamics for hydrodynamics of
nonideal fluids, Phys. Rev. Lett. 101 (2008), 075902.

[23] A. Donev, J. B. Bell, A. de la Fuente, and A. L. Garcia, Diffusive transport by thermal velocity
fluctuations, Phys. Rev. Lett. 106 (2011), no. 20, 204501.

[24] , Enhancement of diffusive transport by non-equilibrium thermal fluctuations, J. Stat.
Mech. Theor. Exp. (2011), P06014.

[25] A. Donev, T. G. Fai, and E. Vanden-Eijnden, Reversible diffusion by thermal fluctuations,
preprint, 2013. arXiv 1306.3158v3

[26] , A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick’s
law, J. Stat. Mech. Theor. Exp. (2014), P04004.

[27] A. Donev, S. Torquato, and F. H. Stillinger, Neighbor list collision-driven molecular dynamics
simulation for nonspherical hard particles, I: Algorithmic details, J. Comput. Phys. 202 (2005),
no. 2, 737–764. MR 2006e:82093 Zbl 1067.82061

[28] , Neighbor list collision-driven molecular dynamics simulation for nonspherical hard
particles, II: Applications to ellipses and ellipsoids, J. Comput. Phys. 202 (2005), no. 2, 765–793.
MR 2006e:82094 Zbl 1067.82062

[29] A. Donev, E. Vanden-Eijnden, A. L. Garcia, and J. B. Bell, On the accuracy of finite-volume
schemes for fluctuating hydrodynamics, Commun. Appl. Math. Comput. Sci. 5 (2010), no. 2,
149–197. MR 2012d:65017 Zbl 1277.76089

[30] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Generic long-range correlations in molecular
fluids, Annu. Rev. Phys. Chem. 45 (1994), 213–239.

[31] B. Dünweg and A. J. C. Ladd, Lattice Boltzmann simulations of soft matter systems, Advanced
computer simulation approaches for soft matter sciences, III (C. Holm and K. Kremer, eds.),
Advances in Polymer Science, no. 221, Springer, Berlin, 2009, pp. 89–166.

[32] D. R. Durran, Improving the anelastic approximation, J. Atmos. Sci. 46 (1989), no. 11, 1453–
1461.

[33] W. E and J.-G. Liu, Gauge method for viscous incompressible flows, Commun. Math. Sci. 1
(2003), no. 2, 317–332. MR 2004c:76039 Zbl 1160.76329

[34] P. Español, J. G. Anero, and I. Zúñiga, Microscopic derivation of discrete hydrodynamics, J.
Chem. Phys. 131 (2009), 244117.

[35] P. Español and I. Zúñiga, On the definition of discrete hydrodynamic variables, J. Chem. Phys.
131 (2009), 164106.

[36] A. L. Garcia, M. Malek Mansour, G. C. Lie, M. Mareschal, and E. Clementi, Hydrodynamic
fluctuations in a dilute gas under shear, Phys. Rev. A 36 (1987), no. 9, 4348–4355.

[37] A. L. Garcia, Estimating hydrodynamic quantities in the presence of microscopic fluctuations,
Commun. Appl. Math. Comput. Sci. 1 (2006), 53–78. MR 2007c:82078 Zbl 1111.82051

[38] R. García-Rojo, S. Luding, and J. J. Brey, Transport coefficients for dense hard-disk systems,
Phys. Rev. E 74 (2006), no. 6, 061305.

http://dx.doi.org/10.1103/PhysRevLett.109.024501
http://dx.doi.org/10.1103/PhysRevE.88.012106
http://dx.doi.org/10.1103/PhysRevLett.101.075902
http://dx.doi.org/10.1103/PhysRevLett.101.075902
http://dx.doi.org/10.1103/PhysRevLett.106.204501
http://dx.doi.org/10.1103/PhysRevLett.106.204501
http://dx.doi.org/10.1088/1742-5468/2011/06/P06014
http://arxiv.org/abs/1306.3158v3
http://dx.doi.org/10.1088/1742-5468/2014/04/P04004
http://dx.doi.org/10.1088/1742-5468/2014/04/P04004
http://dx.doi.org/10.1016/j.jcp.2004.08.014
http://dx.doi.org/10.1016/j.jcp.2004.08.014
http://msp.org/idx/mr/2006e:82093
http://msp.org/idx/zbl/1067.82061
http://dx.doi.org/10.1016/j.jcp.2004.08.025
http://dx.doi.org/10.1016/j.jcp.2004.08.025
http://msp.org/idx/mr/2006e:82094
http://msp.org/idx/zbl/1067.82062
http://dx.doi.org/10.2140/camcos.2010.5.149
http://dx.doi.org/10.2140/camcos.2010.5.149
http://msp.org/idx/mr/2012d:65017
http://msp.org/idx/zbl/1277.76089
http://dx.doi.org/10.1146/annurev.pc.45.100194.001241
http://dx.doi.org/10.1146/annurev.pc.45.100194.001241
http://dx.doi.org/10.1007/978-3-540-87706-6_2
http://dx.doi.org/10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2
http://dx.doi.org/10.4310/CMS.2003.v1.n2.a6
http://msp.org/idx/mr/2004c:76039
http://msp.org/idx/zbl/1160.76329
http://dx.doi.org/10.1063/1.3274222
http://dx.doi.org/10.1063/1.3247586
http://dx.doi.org/10.1103/PhysRevA.36.4348
http://dx.doi.org/10.1103/PhysRevA.36.4348
http://dx.doi.org/10.2140/camcos.2006.1.53
http://msp.org/idx/mr/2007c:82078
http://msp.org/idx/zbl/1111.82051
http://dx.doi.org/10.1103/PhysRevE.74.061305


LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS 103

[39] C. W. Gardiner and M. L. Steyn-Ross, Adiabatic elimination in stochastic systems, I, Phys. Rev.
A 29 (1984), 2814–2822.

[40] , Adiabatic elimination in stochastic systems, II, Phys. Rev. A 29 (1984), 2823–2833.

[41] , Adiabatic elimination in stochastic systems, III, Phys. Rev. A 29 (1984), 2834–2844.

[42] D. M. Gass, Enskog theory for a rigid disk fluid, J. Chem. Phys. 54 (1971), no. 5, 1898–1902.

[43] F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible
flow of fluids with free surfaces, Phys. Fluids 8 (1965), 2182–2189.

[44] Y. Hennequin, D. G. A. L. Aarts, J. H. van der Wiel, G. Wegdam, J. Eggers, H. N. W. Lekkerk-
erker, and D. Bonn, Drop formation by thermal fluctuations at an ultralow surface tension, Phys.
Rev. Lett. 97 (2006), no. 24, 244502.

[45] C. Hijón, P. Español, E. Vanden-Eijnden, and R. Delgado-Buscalioni, Mori–Zwanzig formalism
as a practical computational tool, Faraday Discuss. 144 (2010), 301–322.

[46] C. A. Kennedy and M. H. Carpenter, Several new numerical methods for compressible shear-
layer simulations, Appl. Num. Math. 14 (1994), no. 4, 397–433. MR 95d:76073 Zbl 0804.76062

[47] S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl. Math.
35 (1982), no. 5, 629–651. MR 84a:35264 Zbl 0478.76091

[48] L. D. Landau and E. M. Lifshitz, Fluid mechanics, Course of Theoretical Physics, no. 6,
Pergamon Press, Oxford, 1959.

[49] , Statistical physics, I, 3rd ed., Course of Theoretical Physics, no. 5, Butterworth–
Heinemann, Oxford, 1980.

[50] J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn–Hilliard fluids and topological
transitions, Proc. R. Soc. Lond. Ser. A 454 (1998), no. 1978, 2617–2654. MR 2000e:82022
Zbl 0927.76007

[51] J. Lutsko and J. W. Dufty, Mode-coupling contributions to the nonlinear shear viscosity, Phys.
Rev. A 32 (1985), 1229–1231.

[52] A. Majda and J. Sethian, The derivation and numerical solution of the equations for zero Mach
number combustion, Combust. Sci. Technol. 42 (1985), no. 3–4, 185–205.

[53] M. Mareschal, M. Malek Mansour, G. Sonnino, and E. Kestemont, Dynamic structure factor in
a nonequilibrium fluid: a molecular-dynamics approach, Phys. Rev. A 45 (1992), 7180–7183.

[54] Y. Morinishi, T. S. Lund, O. V. Vasilyev, and P. Moin, Fully conservative higher order fi-
nite difference schemes for incompressible flow, J. Comput. Phys. 143 (1998), no. 1, 90–124.
MR 99a:76100 Zbl 0932.76054

[55] M. Moseler and U. Landman, Formation, stability, and breakup of nanojets, Science 289 (2000),
no. 5482, 1165–1169.

[56] B. Müller, Low-Mach-number asymptotics of the Navier–Stokes equations, J. Eng. Math. 34
(1998), no. 1–2, 97–109. MR 99f:76111 Zbl 0924.76095

[57] A. Naji, P. J. Atzberger, and F. L. H. Brown, Hybrid elastic and discrete-particle approach to
biomembrane dynamics with application to the mobility of curved integral membrane proteins,
Phys. Rev. Lett. 102 (2009), no. 13, 138102.

[58] F. Nicoud, Conservative high-order finite-difference schemes for low-Mach number flows, J.
Comput. Phys. 158 (2000), no. 1, 71–97. MR 2000j:76112 Zbl 0973.76068

[59] H. Noguchi, N. Kikuchi, and G. Gompper, Particle-based mesoscale hydrodynamic techniques,
Europhys. Lett. 78 (2007), 10005.

http://dx.doi.org/10.1103/PhysRevA.29.2814
http://dx.doi.org/10.1103/PhysRevA.29.2823
http://dx.doi.org/10.1103/PhysRevA.29.2834
http://dx.doi.org/10.1063/1.1675115
http://dx.doi.org/10.1063/1.1761178
http://dx.doi.org/10.1063/1.1761178
http://dx.doi.org/10.1103/PhysRevLett.97.244502
http://dx.doi.org/10.1039/B902479B
http://dx.doi.org/10.1039/B902479B
http://dx.doi.org/10.1016/0168-9274(94)00004-2
http://dx.doi.org/10.1016/0168-9274(94)00004-2
http://msp.org/idx/mr/95d:76073
http://msp.org/idx/zbl/0804.76062
http://dx.doi.org/10.1002/cpa.3160350503
http://msp.org/idx/mr/84a:35264
http://msp.org/idx/zbl/0478.76091
http://dx.doi.org/10.1098/rspa.1998.0273
http://dx.doi.org/10.1098/rspa.1998.0273
http://msp.org/idx/mr/2000e:82022
http://msp.org/idx/zbl/0927.76007
http://dx.doi.org/10.1103/PhysRevA.32.1229
http://dx.doi.org/10.1080/00102208508960376
http://dx.doi.org/10.1080/00102208508960376
http://dx.doi.org/10.1103/PhysRevA.45.7180
http://dx.doi.org/10.1103/PhysRevA.45.7180
http://dx.doi.org/10.1006/jcph.1998.5962
http://dx.doi.org/10.1006/jcph.1998.5962
http://msp.org/idx/mr/99a:76100
http://msp.org/idx/zbl/0932.76054
http://dx.doi.org/10.1126/science.289.5482.1165
http://dx.doi.org/10.1023/A:1004349817404
http://msp.org/idx/mr/99f:76111
http://msp.org/idx/zbl/0924.76095
http://dx.doi.org/10.1103/PhysRevLett.102.138102
http://dx.doi.org/10.1103/PhysRevLett.102.138102
http://dx.doi.org/10.1006/jcph.1999.6408
http://msp.org/idx/mr/2000j:76112
http://msp.org/idx/zbl/0973.76068
http://dx.doi.org/10.1209/0295-5075/78/10005


104 A. DONEV, A. NONAKA, Y. SUN, T. G. FAI, A. L. GARCIA AND J. B. BELL

[60] J. M. Ortiz de Zárate and J. V. Sengers, On the physical origin of long-ranged fluctuations
in fluids in thermal nonequilibrium states, J. Stat. Phys. 115 (2004), no. 5–6, 1341–1359.
Zbl 1157.76308

[61] , Hydrodynamic fluctuations in fluids and fluid mixtures, Elsevier, Amsterdam, 2006.

[62] H. C. Öttinger, Beyond equilibrium thermodynamics, Wiley, Hoboken, NJ, 2005.

[63] R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland, and J. P.
Jessee, An adaptive projection method for unsteady, low-Mach number combustion, Combust.
Sci. Technol. 140 (1998), no. 1–6, 123–168.

[64] C. S. Peskin, G. M. Odell, and G. F. Oster, Cellular motions and thermal fluctuations: the
Brownian ratchet, Biophys. J. 65 (1993), no. 1, 316–324.

[65] P. Rauwoens, J. Vierendeels, E. Dick, and B. Merci, A conservative discrete compatibility-
constraint low-Mach pressure-correction algorithm for time-accurate simulations of variable
density flows, J. Comput. Phys. 228 (2009), no. 13, 4714–4744. MR 2010g:65123 Zbl 05581929

[66] R. G. Rehm and H. R. Baum, The equations of motion for thermally driven buoyant flows, J. Res.
Natl. Bur. Stand. 83 (1978), 297–308. Zbl 0433.76072

[67] T. Schneider, N. Botta, K. J. Geratz, and R. Klein, Extension of finite volume compressible flow
solvers to multi-dimensional, variable density zero Mach number flows, J. Comput. Phys. 155
(1999), no. 2, 248–286. MR 2000g:76081 Zbl 0968.76054

[68] B. Z. Shang, N. K. Voulgarakis, and J.-W. Chu, Fluctuating hydrodynamics for multiscale
simulation of inhomogeneous fluids: mapping all-atom molecular dynamics to capillary waves,
J. Chem. Phys. 135 (2011), 044111.

[69] C. M. Silva and H. Liu, Modelling of transport properties of hard sphere fluids and related
systems, and its applications, Theory and simulation of hard-sphere fluids and related systems
(A. Mulero, ed.), Lect. Notes Phys., no. 753, Springer, Berlin, 2008, pp. 383–492. MR 2503513

[70] M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato, Packing hyperspheres in high-dimensional
Euclidean spaces, Phys. Rev. E 74 (2006), no. 4, 041127. MR 2007j:82048

[71] P. T. Sumesh, I. Pagonabarraga, and R. Adhikari, Lattice-Boltzmann–Langevin simulations of
binary mixtures, Phys. Rev. E 84 (2011), 046709.

[72] C. J. Takacs, G. Nikolaenko, and D. S. Cannell, Dynamics of long-wavelength fluctuations in a
fluid layer heated from above, Phys. Rev. Lett. 100 (2008), no. 23, 234502.

[73] F. B. Usabiaga, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B. E. Griffith, and C. S.
Peskin, Staggered schemes for fluctuating hydrodynamics, Multiscale Model. Simul. 10 (2012),
no. 4, 1369–1408. MR 3022043 Zbl 06160065

[74] A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, C. J. Takacs, and D. S. Cannell, Gradient-driven
fluctuations in microgravity, J. Phys. Condens. Matter 24 (2012), no. 28, 284134.

[75] A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell, and M. Giglio, Fractal fronts of
diffusion in microgravity, Nat. Commun. 2 (2011), 290.

[76] A. Vailati and M. Giglio, Giant fluctuations in a free diffusion process, Nature 390 (1997),
262–265.

[77] , Nonequilibrium fluctuations in time-dependent diffusion processes, Phys. Rev. E 58
(1998), no. 4, 4361–4371.

[78] N. K. Voulgarakis and J.-W. Chu, Bridging fluctuating hydrodynamics and molecular dynamics
simulations of fluids, J. Chem. Phys. 130 (2009), no. 13, 134111.

[79] L. Wang and M. Quintard, Nanofluids of the future, Advances in transport phenomena 2009 (L.
Wang, ed.), Adv. Trans. Phenom., no. 1, Springer, Berlin, 2009, pp. 179–243.

http://dx.doi.org/10.1023/B:JOSS.0000028062.57459.52
http://dx.doi.org/10.1023/B:JOSS.0000028062.57459.52
http://msp.org/idx/zbl/1157.76308
http://www.sciencedirect.com/science/book/9780444515155
http://dx.doi.org/10.1002/0471727903
http://dx.doi.org/10.1080/00102209808915770
http://dx.doi.org/10.1016/S0006-3495(93)81035-X
http://dx.doi.org/10.1016/S0006-3495(93)81035-X
http://dx.doi.org/10.1016/j.jcp.2009.03.036
http://dx.doi.org/10.1016/j.jcp.2009.03.036
http://dx.doi.org/10.1016/j.jcp.2009.03.036
http://msp.org/idx/mr/2010g:65123
http://msp.org/idx/zbl/05581929
https://archive.org/details/jresv83n3p297
http://msp.org/idx/zbl/0433.76072
http://dx.doi.org/10.1006/jcph.1999.6327
http://dx.doi.org/10.1006/jcph.1999.6327
http://msp.org/idx/mr/2000g:76081
http://msp.org/idx/zbl/0968.76054
http://dx.doi.org/10.1063/1.3615719
http://dx.doi.org/10.1063/1.3615719
http://dx.doi.org/10.1007/978-3-540-78767-9_9
http://dx.doi.org/10.1007/978-3-540-78767-9_9
http://msp.org/idx/mr/2503513
http://dx.doi.org/10.1103/PhysRevE.74.041127
http://dx.doi.org/10.1103/PhysRevE.74.041127
http://msp.org/idx/mr/2007j:82048
http://dx.doi.org/10.1103/PhysRevE.84.046709
http://dx.doi.org/10.1103/PhysRevE.84.046709
http://dx.doi.org/10.1103/PhysRevLett.100.234502
http://dx.doi.org/10.1103/PhysRevLett.100.234502
http://dx.doi.org/10.1137/120864520
http://msp.org/idx/mr/3022043
http://msp.org/idx/zbl/06160065
http://dx.doi.org/10.1088/0953-8984/24/28/284134
http://dx.doi.org/10.1088/0953-8984/24/28/284134
http://dx.doi.org/10.1038/ncomms1290
http://dx.doi.org/10.1038/ncomms1290
http://dx.doi.org/10.1038/36803
http://dx.doi.org/10.1103/PhysRevE.58.4361
http://dx.doi.org/10.1063/1.3106717
http://dx.doi.org/10.1063/1.3106717
http://dx.doi.org/10.1007/978-3-642-02690-4_4


LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS 105

Received November 26, 2013. Revised January 14, 2014.

ALEKSANDAR DONEV: donev@courant.nyu.edu
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,
New York, NY 10012, United States

ANDY NONAKA: ajnonaka@lbl.gov
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA 94720, United States

YIFEI SUN: yifei@cims.nyu.edu
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,
New York, NY 10012, United States

and

Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of
Medicine, New York, NY 10016, United States

THOMAS G. FAI: tfai@cims.nyu.edu
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,
New York, NY 10012, United States

ALEJANDRO L. GARCIA: alejandro.garcia@sjsu.edu
Department of Physics and Astronomy, San Jose State University, 1 Washington Square,
San Jose, CA 95192, United States

JOHN B. BELL: jbbell@lbl.gov
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA 94720, United States

mathematical sciences publishers msp

mailto:donev@courant.nyu.edu
mailto:ajnonaka@lbl.gov
mailto:yifei@cims.nyu.edu
mailto:tfai@cims.nyu.edu
mailto:alejandro.garcia@sjsu.edu
mailto:jbbell@lbl.gov
http://msp.org



	I. Introduction
	II. Low Mach number equations
	II-A. Compressible equations
	II-B. Low Mach equations
	II-C. Gauge formalism

	III. Temporal integration
	III-A. Euler scheme
	III-B. Higher-order temporal integrators
	III-C. EOS drift

	IV. Spatial discretization
	IV-A. Diffusion
	IV-B. Viscous terms
	IV-C. Advection
	IV-D. Discrete projection
	IV-E. Boundary conditions
	IV-F. Summary of Euler–Maruyama method

	V. Giant concentration fluctuations
	V-A. Simulation parameters
	V-B. Results

	VI. Diffusive mixing in hard-disk and hard-sphere fluids
	VI-A. Hard-disk molecular dynamics
	VI-B. Hard-disk hydrodynamics
	VI-C. Comparison between molecular-dynamics and fluctuating hydrodynamics simulations
	VI-D. Hard-sphere fluctuating hydrodynamics simulations

	VII. Conclusions
	Appendix A: Linearized analysis
	A1. Compressible equations
	A2. Low Mach equations

	Appendix B: Spatial filtering
	Appendix C: Extracting transport properties from molecular dynamics
	C1. Viscosity 
	C2. Diffusion coefficient 

	Acknowledgments
	References

